Severe Accident Characterization of Fukushima Reactors and Experiences During Real-World Emergency Response
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.
International Congress on Advances in Nuclear Power Plants 2010, ICAPP 2010
A fission product release and transport model for High Temperature Gas cooled Reactors (HTGRs) is being developed for the MELCOR code. HTGRs use fuel in the form of TRISO coated fuel particles embedded in a graphitized matrix. The HTGR fission product model for MELCOR is being developed to calculate the released amounts and distribution offission products during normal operation and during accidents. The fission product release and transport model considers the important phenomena for fission product behavior in HTGRs, including the recoil and release offission products from the fuel kernel, transport through the coating layers, transport through the surrounding fuel matrix, release into circulating helium coolant, settling and plate-out on structural surfaces, adsorption by graphite dust in the primary system, and resuspension. The fraction of failed particles versus time is input by a particle failure fraction response surface of particle failure fraction as a function offuel temperature, and potentially, fuel burn-up. Fission product release from the fuel kernel and transport through the particle coating layers is calculated using diffusion-based release models. The models account for fission product release from uranium contamination in the graphitized matrix, and adsorption of fission products in the reactor system. The dust and its distribution can be determined from either MELCOR calculations of the reactor system during normal operation, or provided by other sources as input. The distribution of fission products is then normalized using the OR1GEN inventory to provide initial conditions for accident calculations. For the initial releases during an accident, the existing MELCOR aerosol transport models, with appropriate modifications, are being explored for calculating dust and fission product transport in the reactor system and in the confinement. For the delayed releases during the accident, which occur over many hours, and even days fission product release is calculated by combining the diffusion-based release rate with the failure fraction response surface input via a convolution integral. The decay of fission products is also included in the modeling.
Appendix A-5 of Draft Regulatory Guide DG-1199 'Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors' provides guidance - applicable to RADTRAD MSIV leakage models - for scaling containment aerosol concentration to the expected steam dome concentration in order to preserve the simplified use of the Accident Source Term (AST) in assessing containment performance under assumed design basis accident (DBA) conditions. In this study Economic and Safe Boiling Water Reactor (ESBWR) and Advanced Boiling Water Reactor (ABWR) RADTRAD models are developed using the DG-1199, Appendix A-5 guidance. The models were run using RADTRAD v3.03. Low Population Zone (LPZ), control room (CR), and worst-case 2-hr Exclusion Area Boundary (EAB) doses were calculated and compared to the relevant accident dose criteria in 10 CFR 50.67. For the ESBWR, the dose results were all lower than the MSIV leakage doses calculated by General Electric/Hitachi (GEH) in their licensing technical report. There are no comparable ABWR MSIV leakage doses, however, it should be noted that the ABWR doses are lower than the ESBWR doses. In addition, sensitivity cases were evaluated to ascertain the influence/importance of key input parameters/features of the models.
The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.
The Phebus and VERCORS data have played an important role in contemporary understanding and modeling of fission product release and transport from damaged LWR fuel. The data from these test programs have allowed improvement of MELCOR modeling of release and transport processes for both low enrichment uranium fuel as well as high burnup and MOX fuels. The following paper describes the derivation, testing and incorporation of improved radionuclide release models into the MELCOR severe accident code.
The Phebus and VERCORS data have played an important role in contemporary understanding and modeling of fission product release and transport from damaged light water reactor fuel. The data from these test programs have allowed improvement of MELCOR modeling of release and transport processes for both low enrichment uranium fuel as well as high burnup and mixed oxide (MOX) fuels. This paper discusses the synthesis of these findings in the MELCOR severe accident code. Based on recent assessments of MELCOR 1.8.5 fission product release modeling against the Phebus FPT-1 test and on observations from the ISP-46 exercise, modifications to the default MELCOR 1.8.5 release models are recommended. The assessments identified an alternative set of Booth diffusion parameters recommended by ORNL (ORNL-Booth), which produced significantly improved release predictions for cesium and other fission product groups. Some adjustments to the scaling factors in the ORNL-Booth model were made for selected fission product groups, including UO{sub 2}, Mo and Ru in order to obtain better comparisons with the FPT-1 data. The adjusted model, referred to as 'Modified ORNL-Booth,' was subsequently compared to original ORNL VI fission product release experiments and to more recently performed French VERCORS tests, and the comparisons was as favorable or better than the original CORSOR-M MELCOR default release model. These modified ORNL-Booth parameters, input to MELCOR 1.8.5 as 'sensitivity coefficients' (i.e. user input that over-rides the code defaults) are recommended for the interim period until improved release models can be implemented into MELCOR. For the case of ruthenium release in air-oxidizing conditions, some additional modifications to the Ru class vapor pressure are recommended based on estimates of the RuO{sub 2} vapor pressure over mildly hyperstoichiometric UO{sub 2}. The increased vapor pressure for this class significantly increases the net transport of Ru from the fuel to the gas stream. A formal model is needed. Deposition patterns in the Phebus FPT-1 circuit were also significantly improved by using the modified ORNL-Booth parameters, where retention of lower volatile Cs{sub 2}MoO{sub 4} is now predicted in the heated exit regions of the FPT-1 test, bringing down depositions in the FPT-1 steam generator tube to be in closer alignment with the experimental data. This improvement in 'RCS' deposition behavior preserves the overall correct release of cesium to the containment that was observed even with the default CORSOR-M model. Not correctly treated however is the release and transport of Ag to the FPT-1 containment. A model for Ag release from control rods is presently not available in MELCOR. Lack of this model is thought to be responsible for the underprediction by a factor of two of the total aerosol mass to the FPT-1 containment. It is suggested that this underprediction of airborne mass led to an underprediction of the aerosol agglomeration rate. Underprediction of the agglomeration rate leads to low predictions of the aerosol particle size in comparison to experimentally measured ones. Small particle size leads low predictions of the gravitational settling rate relative to the experimental data. This error, however, is a conservative one in that too-low settling rate would result in a larger source term to the environment. Implementation of an interim Ag release model is currently under study. In the course of this assessment, a review of MELCOR release models was performed and led to the identification of several areas for future improvements to MELCOR. These include upgrading the Booth release model to account for changes in local oxidizing/reducing conditions and including a fuel oxidation model to accommodate effects of fuel stoichiometry. Models such as implemented in the French ELSA code and described by Lewis are considered appropriate for MELCOR. A model for ruthenium release under air oxidizing conditions is also needed and should be included as part of a fuel oxidation model since fuel stoichiometry is a fundamental parameter in determining the vapor pressure of ruthenium oxides over the fuel. There is also a need to expand the MELCOR architecture for tracking fission product classes to allow for more speciation of fission products. An example is the formation of CsI and Cs{sub 2}MoO{sub 4} and potentially CsOH if all Mo is combined with Cs such that excess Cs exists in the fuel. Presently, MELCOR can track only one class combination (CsI) accurately, where excess Cs is assumed to be CsOH. Our recommended interim modifications map the CsOH (MELCOR Radionuclide Class 2) and Mo (Class 7) vapor pressure properties to Cs{sub 2}MoO{sub 4}, which approximates the desired formal class combination of Cs and Mo. Other extensions to handle properly iodine speciation from pool/gas chemistry are also needed.
In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU analyses. Additionally, current analyses suggest that the NUREG-1465 release fractions are conservative by about a factor of 2 in terms of release fractions and that release durations for in-vessel and late in-vessel release periods are in fact longer than the NUREG-1465 durations. It is currently planned that a subsequent report will further characterize these results using more refined statistical methods, permitting a more precise reformulation of the NUREG-1465 alternative source term for both LBU and HBU fuels, with the most important finding being that the NUREG-1465 formula appears to embody significant conservatism compared to current best-estimate analyses.
As part of a Nuclear Regulatory Commission (NRC) research program to evaluate the impact of using mixed-oxide (MOX) fuel in commercial nuclear power plants, a study was undertaken to evaluate the impact of the usage of MOX fuel on the consequences of postulated severe accidents. A series of 23 severe accident calculations was performed using MELCOR 1.8.5 for a four-loop Westinghouse reactor with an ice condenser containment. The calculations covered five basic accident classes that were identified as the risk- and consequence-dominant accident sequences in plant-specific probabilistic risk assessments for the McGuire and Catawba nuclear plants, including station blackouts and loss-of-coolant accidents of various sizes, with both early and late containment failures. Ultimately, the results of these MELCOR simulations will be used to provide a supplement to the NRC's alternative source term described in NUREG-1465. Source term magnitude and timing results are presented consistent with the NUREG-1465 format. For each of the severe accident release phases (coolant release, gap release, in-vessel release, ex-vessel release, and late in-vessel release), source term timing information (onset of release and duration) is presented. For all release phases except for the coolant release phase, magnitudes are presented for each of the NUREG-1465 radionuclide groups. MELCOR results showed variation of noble metal releases between those typical of ruthenium (Ru) and those typical of molybdenum (Mo); therefore, results for the noble metals were presented for Ru and Mo separately. The collection of the source term results can be used as the basis to develop a representative source term (across all accident types) that will be the MOX supplement to NUREG-1465.
Abstract not provided.
A simplified ESBWR MELCOR model was developed to track the transport of iodine released from damaged reactor fuel in a hypothesized core damage accident. To account for the effects of iodine pool chemistry, radiolysis of air and cable insulation, and surface coatings (i.e., paint) the iodine pool model in MELCOR was activated. Modifications were made to MELCOR to add sodium pentaborate as a buffer in the iodine pool chemistry model. An issue of specific interest was whether iodine vapor removed from the drywell vapor space by the PCCS heat exchangers would be sequestered in water pools or if it would be rereleased as vapor back into the drywell. As iodine vapor is not included in the deposition models for diffusiophoresis or thermophoresis in current version of MELCOR, a parametric study was conducted to evaluate the impact of a range of iodine removal coefficients in the PCCS heat exchangers. The study found that higher removal coefficients resulted in a lower mass of iodine vapor in the drywell vapor space.
Analyses were performed using MELCOR and RADTRAD to investigate main steam isolation valve (MSIV) leakage behavior under design basis accident (DBA) loss-of-coolant (LOCA) conditions that are presumed to have led to a significant core melt accident. Dose to the control room, site boundary and LPZ are examined using both approaches described in current regulatory guidelines as well as analyses based on best estimate source term and system response. At issue is the current practice of using containment airborne aerosol concentrations as a surrogate for the in-vessel aerosol concentration that exists in the near vicinity of the MSIVs. This study finds current practice using the AST-based containment aerosol concentrations for assessing MSIV leakage is non-conservative and conceptually in error. A methodology is proposed that scales the containment aerosol concentration to the expected vessel concentration in order to preserve the simplified use of the AST in assessing containment performance under assumed DBA conditions. This correction is required during the first two hours of the accident while the gap and early in-vessel source terms are present. It is general practice to assume that at {approx}2hrs, recovery actions to reflood the core will have been successful and that further core damage can be avoided. The analyses performed in this study determine that, after two hours, assuming vessel reflooding has taken place, the containment aerosol concentration can then conservatively be used as the effective source to the leaking MSIV's. Recommendations are provided concerning typical aerosol removal coefficients that can be used in the RADTRAD code to predict source attenuation in the steam lines, and on robust methods of predicting MSIV leakage flows based on measured MSIV leakage performance.
Nuclear Technology Journal
Abstract not provided.