Publications

Results 26–50 of 67
Skip to search filters

The refurbished Z facility : capabilities and recent experiments

Matzen, M.K.; Long, Finis W.; McKee, George R.; Mehlhorn, Thomas A.; Schneider, Larry X.; Struve, Kenneth W.; Stygar, William A.; Weinbrecht, Edward A.; Atherton, B.W.; Cuneo, M.E.; Donovan, Guy L.; Hall, Clint A.; Herrmann, Mark H.; Kiefer, Mark L.; Leeper, Ramon J.; Leifeste, Gordon T.

The Z Refurbishment Project was completed in September 2007. Prior to the shutdown of the Z facility in July 2006 to install the new hardware, it provided currents of {le} 20 MA to produce energetic, intense X-ray sources ({approx} 1.6 MJ, > 200 TW) for performing high energy density science experiments and to produce high magnetic fields and pressures for performing dynamic material property experiments. The refurbishment project doubled the stored energy within the existing tank structure and replaced older components with modern, conventional technology and systems that were designed to drive both short-pulse Z-pinch implosions and long-pulse dynamic material property experiments. The project goals were to increase the delivered current for additional performance capability, improve overall precision and pulse shape flexibility for better reproducibility and data quality, and provide the capacity to perform more shots. Experiments over the past year have been devoted to bringing the facility up to full operating capabilities and implementing a refurbished suite of diagnostics. In addition, we have enhanced our X-ray backlighting diagnostics through the addition of a two-frame capability to the Z-Beamlet system and the addition of a high power laser (Z-Petawatt). In this paper, we will summarize the changes made to the Z facility, highlight the new capabilities, and discuss the results of some of the early experiments.

More Details

Differential B-dot and D-dot monitors for current and voltage measurements on a 20-MA 3-MV pulsed-power accelerator

Proposed for publication in Physical Review Special Topics - Accelerators and Beams.

Stygar, William A.; Savage, Mark E.; Speas, Christopher S.; Struve, Kenneth W.; Donovan, Guy L.; Lee, James R.; Leeper, Ramon J.; Leifeste, Gordon T.; Mills, Jerry A.; Rochau, G.A.; Rochau, Gary E.

We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-{Omega} balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-{omega} cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cm-diameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differential-output gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MV on dedicated accelerator shots with a short-circuit load. Faraday's law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA to a low-impedance z-pinch load, the peak lineal current densities at the stack, outer-MITL, and inner-MITL monitor locations are 0.5, 1, and 58 MA/m, respectively. On such shots the peak currents measured at these three locations agree to within 1%.

More Details

Architecture of petawatt-class z-pinch accelerators

Physical Review Special Topics - Accelerators and Beams

Stygar, William A.; Cuneo, M.E.; Headley, D.I.; Ives, H.C.; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, C.L.; Porter, J.L.; Wagoner, T.C.; Woodworth, J.R.

We have developed an accelerator architecture that can serve as the basis of the design of petawatt-class z-pinch drivers. The architecture has been applied to the design of two z-pinch accelerators, each of which can be contained within a 104-m-diameter cylindrical tank. One accelerator is driven by slow (∼1μs) Marx generators, which are a mature technology but which necessitate significant pulse compression to achieve the short pulses (1μs) required to drive z pinches. The other is powered by linear transformer drivers (LTDs), which are less mature but produce much shorter pulses than conventional Marxes. Consequently, an LTD-driven accelerator promises to be (at a given pinch current and implosion time) more efficient and reliable. The Marx-driven accelerator produces a peak electrical power of 500 TW and includes the following components: (i) 300 Marx generators that comprise a total of 1.8×104 capacitors, store 98 MJ, and erect to 5 MV; (ii) 600 water-dielectric triplate intermediate-store transmission lines, which also serve as pulse-forming lines; (iii) 600 5-MV laser-triggered gas switches; (iv) three monolithic radial-transmission-line impedance transformers, with triplate geometries and exponential impedance profiles; (v) a 6-level 5.5-m-diameter 15-MV vacuum insulator stack; (vi) six magnetically insulated vacuum transmission lines (MITLs); and (vii) a triple-post-hole vacuum convolute that adds the output currents of the six MITLs, and delivers the combined current to a z-pinch load. The accelerator delivers an effective peak current of 52 MA to a 10-mm-length z pinch that implodes in 95 ns, and 57 MA to a pinch that implodes in 120 ns. The LTD-driven accelerator includes monolithic radial transformers and a MITL system similar to those described above, but does not include intermediate-store transmission lines, multimegavolt gas switches, or a laser trigger system. Instead, this accelerator is driven by 210 LTD modules that include a total of 1×106 capacitors and 5×105 200-kV electrically triggered gas switches. The LTD accelerator stores 182 MJ and produces a peak electrical power of 1000 TW. The accelerator delivers an effective peak current of 68 MA to a pinch that implodes in 95 ns, and 75 MA to a pinch that implodes in 120 ns. Conceptually straightforward upgrades to these designs would deliver even higher pinch currents and faster implosions. © 2007 The American Physical Society.

More Details

Wire initiation critical for radiation symmetry in Z-pinch-driven dynamic hohlraums

Physical Review Letters

Sanford, T.W.L.; Jennings, C.A.; Rochau, G.A.; Rosenthal, Stephen E.; Sarkisov, G.S.; Sasorov, P.V.; Stygar, William A.; Bennett, Lawrence F.; Bliss, David E.; Chittenden, J.P.; Cuneo, M.E.; Haines, M.G.; Leeper, Ramon J.; Mock, R.C.; Nash, Thomas J.; Peterson, D.L.

Axial symmetry in x-ray radiation of wire-array z pinches is important for the creation of dynamic hohlraums used to compress inertial-confinement-fusion capsules. We present the first evidence that this symmetry is directly correlated with the magnitude of the negative radial electric field along the wire surface. This field (in turn) is inferred to control the initial energy deposition into the wire cores, as well as any current shorting to the return conductor. © 2007 The American Physical Society.

More Details
Results 26–50 of 67
Results 26–50 of 67