Publications

Results 76–100 of 218
Skip to search filters

Shear-induced softening of nanocrystalline metal interfaces at cryogenic temperatures

Scripta Materialia

Chandross, M.; Curry, John C.; Babuska, Tomas F.; Lu, Ping L.; Furnish, Timothy A.; Kustas, Andrew K.; Nation, Brendan L.; Staats, Wayne L.; Argibay, Nicolas A.

We demonstrate inverse Hall-Petch behavior (softening) in pure copper sliding contacts at cryogenic temperatures. By kinetically limiting grain growth, it is possible to generate a quasi-stable ultra-nanocrystalline surface layer with reduced strength. In situ electrical contact resistance measurements were used to determine grain size evolution at the interface, in agreement with reports of softening in highly nanotwinned copper. We also show evidence of a direct correlation between surface grain size and friction coefficient, validating a model linking friction in pure metals and the transition from dislocation mediated plasticity to grain boundary sliding.

More Details

Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

Scientific Reports

Gao, Wenpei; Wu, Jianbo; Yoon, Aram; Lu, Ping L.; Qi, Liang; Wen, Jianguo; Miller, Dean J.; Mabon, James C.; Wilson, William L.; Yang, Hong; Zuo, Jian M.

Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. Here, we report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven by inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300 °C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.

More Details

Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

Scientific Reports

Lu, Ping L.

Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. Here, we report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven by inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Furthermore by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.

More Details

Novel Layered Supercell Structure from Bi2AlMnO6 for Multifunctionalities

Nano Letters

Lu, Ping L.

Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi3O3+δ] and [MO2]1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.

More Details

Emergent Phenomena in Oxide Nanostructures

Pan, Wei P.; Ihlefed, Jon F.; Lu, Ping L.; Lee, Stephen R.

The field of oxide electronics has seen tremendous growth over two decades and oxide materials find wide-ranging applications in information storage, fuel cells, batteries, and more. Phase transitions, such as magnetic and metal-to-insulator transitions, are one of the most important phenomena in oxide nanostructures. Many novel devices utilizing these phase transitions have been proposed, ranging from ultrafast switches for logic applications to low power memory structures. Yet, despite this promise and many years of research, a complete understanding of phase transitions in oxide nanostructures remains elusive. In this LDRD, we report two important observations of phase transitions. We conducted a systematic study of these transitions. Moreover, emergent quantum phenomena due to the strong correlations and interactions among the charge, orbital, and spin degrees of freedom inherent in transition metal oxides were explored. In addition, a new, fast atomic-scale chemical imaging technique developed through the characterization of these oxides is presented.

More Details

Self-assembled Co-BaZrO3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars

Nanoscale

Huang, Jijie; Li, Leigang; Lu, Ping L.; Qi, Zhimin; Lu, Ping L.; Zhang, Xinghang; Wang, Haiyan

A simple one-step pulsed laser deposition (PLD) method has been applied to grow self-assembled metal-oxide nanocomposite thin films. The as-deposited Co-BaZrO3 films show high epitaxial quality with ultra-fine vertically aligned Co nanopillars (diameter <5 nm) embedded in a BZO matrix. The diameter of the nanopillars can be further tuned by varying the deposition frequency. The metal and oxide phases grow separately without inter-diffusion or mixing. Taking advantage of this unique structure, a high saturation magnetization of ∼1375 emu cm-3 in the Co-BaZrO3 nanocomposites has been achieved and further confirmed by Lorentz microscopy imaging in TEM. Furthermore, the coercivity values of this nanocomposite thin films range from 600 Oe (20 Hz) to 1020 Oe (2 Hz), which makes the nanocomposite an ideal candidate for high-density perpendicular recording media.

More Details

Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers

Nano Letters

Li, Changyi; Wright, Jeremy B.; Liu, Sheng L.; Lu, Ping L.; Figiel, J.J.; Leung, Benjamin; Chow, Weng W.; Brener, Igal B.; Koleske, Daniel K.; Luk, Ting S.; Feezell, Daniel F.; Brueck, S.R.J.; Wang, George T.

We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.

More Details
Results 76–100 of 218
Results 76–100 of 218