Publications

Results 51–75 of 218
Skip to search filters

Determining interface structures in vertically aligned nanocomposite films

APL Materials

Zhu, Bonan; Schusteritsch, Georg; Lu, Ping L.; Macmanus-Driscoll, Judith L.; Pickard, Chris J.

Vertically aligned nanocomposite (VAN) films have self-assembled pillar-matrix nanostructures. Owing to their large area-to-volume ratios, interfaces in VAN films are expected to play key roles in inducing functional properties, but our understanding is hindered by limited knowledge about their structures. Motivated by the lack of definitive explanation for the experimentally found enhanced ionic conductivity in Sm-doped-CeO2/SrTiO3 VAN films, we determine the structure at vertical interfaces using random structure searching and explore how it can affect ionic conduction. Interatomic potentials are used to perform the initial searching, followed by first-principles calculations for refinement. Previously unknown structures are found, with lower energy than that of an optimized hand-built model. We find a strongly distorted oxygen sublattice which gives a complex landscape of vacancy energies. The cation lattice remains similar to the bulk phase, but has a localized strain field. The excess energy of the interface is similar to that of high angle grain boundaries in SrTiO3.

More Details

On the thermal stability and grain boundary segregation in nanocrystalline PtAu alloys

Materialia

Lu, Ping L.; Abdeljawad, F.; Rodriguez, M.; Chandross, M.; Adams, D.P.; Boyce, B.L.; Clark, B.G.; Argibay, N.

Grain boundary (GB) solute segregation has been proposed as a new mechanism to stabilize nanocrystalline (NC) metals. In this study, we investigate the thermal stability and GB solute segregation in a noble metal alloy system (Pt–Au). Thermal stability of the Pt.90Au.10 alloy system was evaluated by annealing a thin film (∼20 nm in thickness) at 500 °C and 700 °C as well as a thick film (∼2 µm in thickness) at a temperature range from 200 °C to 700 °C. The remarkable stability of the Pt.90Au.10 alloy system was demonstrated by comparing its thermal stability to that of pure Pt films processed under identical conditions. Although presence of voids in the GBs may contribute to thermal stability, the enhanced thermal stability of the Pt.90Au.10 alloy is mainly attributed to preferential Au segregation to GBs in the alloy film, which is revealed by aberration-corrected scanning transmission electron microscopy. Our results show that Au segregation to GBs is heterogeneous, with variation in solute content between different GBs as well as non-uniformity along individual GBs. The heterogeneity is dependent on the annealing temperature and is less pronounced at a higher processing temperatures (e.g., 700 °C). By using the noble Pt–Au system, which avoids oxidation and impurities, this study validates the mechanism of GB solute segregation and provides further understanding of the thermodynamics and kinetics underlying NC stabilization.

More Details

3D strain-induced superconductivity in La2CuO4+δ using a simple vertically aligned nanocomposite approach

Science Advances

Choi, Eun M.; Di Bernardo, Angelo; Zhu, Bonan; Lu, Ping L.; Alpern, Hen; Zhang, Kelvin H.L.; Shapira, Tamar; Feighan, John; Lu, Ping L.; Robinson, Jason; Paltiel, Yossi; Millo, Oded; Wang, Haiyan; Jia, Quanxi; MacManus-Driscoll, Judith L.

A long-term goal for superconductors is to increase the superconducting transition temperature, TC. In cuprates, TC depends strongly on the out-of-plane Cu-apical oxygen distance and the in-plane Cu-O distance, but there has been little attention paid to tuning them independently. Here, in simply grown, self-assembled, vertically aligned nanocomposite thin films of La2CuO4+δ + LaCuO3, by strongly increasing out-of-plane distances without reducing in-plane distances (three-dimensional strain engineering), we achieve superconductivity up to 50 K in the vertical interface regions, spaced ∼50 nm apart. No additional process to supply excess oxygen, e.g., by ozone or high-pressure oxygen annealing, was required, as is normally the case for plain La2CuO4+δ films. Our proof-of-concept work represents an entirely new approach to increasing TC in cuprates or other superconductors.

More Details

Hybrid plasmonic Au-TiN vertically aligned nanocomposites: A nanoscale platform towards tunable optical sensing

Nanoscale Advances

Wang, Xuejing; Jian, Jie; Diaz-Amaya, Susana; Kumah, Cindy E.; Lu, Ping L.; Huang, Jijie; Lim, Daw G.; Pol, Vilas G.; Youngblood, Jeffrey P.; Boltasseva, Alexandra; Stanciu, Lia A.; O'Carroll, Deirdre M.; Zhang, Xinghang; Wang, Haiyan

Tunable plasmonic structure at the nanometer scale presents enormous opportunities for various photonic devices. In this work, we present a hybrid plasmonic thin film platform: i.e., a vertically aligned Au nanopillar array grown inside a TiN matrix with controllable Au pillar density. Compared to single phase plasmonic materials, the presented tunable hybrid nanostructures attain optical flexibility including gradual tuning and anisotropic behavior of the complex dielectric function, resonant peak shifting and change of surface plasmon resonances (SPRs) in the UV-visible range, all confirmed by numerical simulations. The tailorable hybrid platform also demonstrates enhanced surface plasmon Raman response for Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements, and presents great potentials as designable hybrid platforms for tunable optical-based chemical sensing applications.

More Details

New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys

Nanoscale

Heckman, Nathan H.; Foiles, Stephen M.; O'Brien, Christopher J.; Chandross, M.; Barr, Christopher M.; Argibay, Nicolas A.; Hattar, Khalid M.; Lu, Ping L.; Adams, David P.; Boyce, Brad B.

Nanocrystalline metals offer significant improvements in structural performance over conventional alloys. However, their performance is limited by grain boundary instability and limited ductility. Solute segregation has been proposed as a stabilization mechanism, however the solute atoms can embrittle grain boundaries and further degrade the toughness. In the present study, we confirm the embrittling effect of solute segregation in Pt-Au alloys. However, more importantly, we show that inhomogeneous chemical segregation to the grain boundary can lead to a new toughening mechanism termed compositional crack arrest. Energy dissipation is facilitated by the formation of nanocrack networks formed when cracks arrested at regions of the grain boundaries that were starved in the embrittling element. This mechanism, in concert with triple junction crack arrest, provides pathways to optimize both thermal stability and energy dissipation. A combination of in situ tensile deformation experiments and molecular dynamics simulations elucidate both the embrittling and toughening processes that can occur as a function of solute content.

More Details

In situ tribochemical formation of self-lubricating diamond-like carbon films

Carbon

Argibay, Nicolas A.; Babuska, Tomas F.; Curry, John C.; Dugger, Michael T.; Lu, Ping L.; Adams, David P.; Nation, Brendan L.; Doyle, Barney L.; Pham, Minh P.; Pimentel, Adam S.; Mowry, Curtis D.; Hinkle, Adam H.; Chandross, M.

Diamond-like carbon (DLC) films were tribochemically formed from ambient hydrocarbons on the surface of a highly stable nanocrystalline Pt-Au alloy. A sliding contact between an alumina sphere and Pt-Au coated steel exhibited friction coefficients as low as μ = 0.01 after dry sliding in environments containing trace (ppb) organics. Ex situ analysis indicated that the change in friction coefficient was due to the formation of amorphous carbon films, and Raman spectroscopy and elastic recoil analysis showed that these films consist of sp2/sp3 amorphous carbon with as much as 20% hydrogen. Transmission electron microscopy indicated these films had thicknesses exceeding 100 nm, and were enhanced by the incorporation of worn Pt-Au nanoparticles. The result was highly wear-resistant, low-friction DLC/Pt-Au nanocomposites. Atomistic simulations of hydrocarbons under shear between rigid Pt slabs using a reactive force field showed stress-induced changes in bonding through chain scission, a likely route towards the formation of these coatings. This novel demonstration of in situ tribochemical formation of self-lubricating films has significant impact potential in a wide range of engineering applications.

More Details

Quantum Nanofabrication: Mechanisms and Fundamental Limits

Wang, George T.; Coltrin, Michael E.; Lu, Ping L.; Miller, Philip R.; Leung, Benjamin L.; Xiao, Xiaoyin X.; Sapkota, Keshab R.; Leonard, Francois L.; Bran Anleu, Gabriela A.; Koleske, Daniel D.; Tsao, Jeffrey Y.; Balakrishnan, Ganesh B.; Addamane, Sadhvikas A.; Nelson, Jeffrey S.

Quantum-size-controlled photoelectrochemical (QSC-PEC) etching, which uses quantum confinement effects to control size, can potentially enable the fabrication of epitaxial quantum nanostructures with unprecedented accuracy and precision across a wide range of materials systems. However, many open questions remain about this new technique, including its limitations and broader applicability. In this project, using an integrated experimental and theoretical modeling approach, we pursue a greater understanding of the time-dependent QSC-PEC etch process and to uncover the underlying mechanisms that determine its ultimate accuracy and precision. We also seek to broaden our understanding of the scope of its ultimate applicability in emerging nanostructures and nanodevices.

More Details

Achieving Ultralow Wear with Stable Nanocrystalline Metals

Advanced Materials

Curry, John C.; Babuska, Tomas F.; Furnish, Timothy A.; Lu, Ping L.; Adams, David P.; Kustas, Andrew K.; Nation, Brendan L.; Dugger, Michael T.; Chandross, M.; Clark, Blythe C.; Boyce, Brad B.; Schuh, Christopher A.; Argibay, Nicolas A.

Recent work suggests that thermally stable nanocrystallinity in metals is achievable in several binary alloys by modifying grain boundary energies via solute segregation. The remarkable thermal stability of these alloys has been demonstrated in recent reports, with many alloys exhibiting negligible grain growth during prolonged exposure to near-melting temperatures. Pt–Au, a proposed stable alloy consisting of two noble metals, is shown to exhibit extraordinary resistance to wear. Ultralow wear rates, less than a monolayer of material removed per sliding pass, are measured for Pt–Au thin films at a maximum Hertz contact stress of up to 1.1 GPa. This is the first instance of an all-metallic material exhibiting a specific wear rate on the order of 10−9 mm3 N−1 m−1, comparable to diamond-like carbon (DLC) and sapphire. Remarkably, the wear rate of sapphire and silicon nitride probes used in wear experiments are either higher or comparable to that of the Pt–Au alloy, despite the substantially higher hardness of the ceramic probe materials. High-resolution microscopy shows negligible surface microstructural evolution in the wear tracks after 100k sliding passes. Mitigation of fatigue-driven delamination enables a transition to wear by atomic attrition, a regime previously limited to highly wear-resistant materials such as DLC.

More Details

Three-dimensional strain engineering in epitaxial vertically aligned nanocomposite thin films with tunable magnetotransport properties

Materials Horizons

Lu, Ping L.; Huang, Jijie; Jian, Jie; Fan, Meng; Wang, Han; Lu, Ping L.; Mac Manus-Driscoll, Judith L.; Lu, Ping L.; Zhang, Xinghang; Wang, Haiyan

Three-dimensional (3D) frameworks have been successfully constructed by interlayering La0.7Sr0.3MnO3 (LSMO)-CeO2 based epitaxial vertically aligned nanocomposite (VAN) thin films with pure CeO2 (or LSMO) layers. Such 3D interconnected CeO2 scaffolds integrate the lateral film strain by the interlayers with the vertical strain in VAN layers, and thus achieve the maximized strain tuning in LSMO. More importantly, by varying the types of the interlayers (i.e., CeO2 or LSMO) and the number of interlayers from 1 to 3 layers, such 3D framework nanostructures effectively tune the electrical transport properties of LSMO, e.g., from a 3D insulating CeO2 framework with integrated magnetic tunnel junction structures, to a 3D conducting LSMO framework, where the magnetoresistance (MR) peak values have been tuned systematically to a record high of 66% at 56 K and enhanced MR properties at high temperatures above room temperature (∼325 K). This new 3D framed design provides a novel approach in maximizing film strain, enhancing strain-driven functionalities, and manipulating the electrical transport properties effectively.

More Details

Use of Mesoscopic Host Matrix to Induce Ferrimagnetism in Antiferromagnetic Spinel Oxide

Advanced Functional Materials

Park, Chaewoon; Wu, Rui; Lu, Ping L.; Zhao, Hui; Yang, Jinbo; Zhang, Bruce; Li, Weiwei; Yun, Chao; Wang, Haiyan; MacManus-Driscoll, Judith L.; Cho, Seungho

Despite the advances in the methods for fabricating nanoscale materials, critical issues remain, such as the difficulties encountered in anchoring, and the deterioration in their stability after integration with other components. These issues need to be addressed to further increase the scope of their applicability. In this study, using epitaxial mesoscopic host matrices, materials are spatially confined at the nanoscale, and are supported, anchored, and stabilized. They also exhibit properties distinct from the bulk counterparts proving their high quality nanoscale nature. ZnFe2O4 and SrTiO3 are used as the model confined material and host matrix, respectively. The ZnFe2O4 phases are spatially confined by the SrTiO3 mesoscopic matrix and have strongly enhanced ferrimagnetic properties as compared to bulk and plain thin films of ZnFe2O4, with a Curie temperature of ≈500 K. The results of a series of control experiments and characterization measurements indicate that cationic inversion, which originates from the high interface-to-volume ratio of the ZnFe2O4 phase in the ZnFe2O4–SrTiO3 nanocomposite film, is responsible for the magnetization enhancement. An exchange bias is observed, owing to the coexistence of ferrimagnetic and antiferromagnetic regions in the confined ZnFe2O4 phase. The magnetic properties are dependent on the ZnFe2O4 crystallite size, which can be controlled by the growth conditions.

More Details

Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method

Ultramicroscopy

Lu, Ping L.; Moya, Jaime M.; Yuan, Renliang; Zuo, Jian M.

The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.

More Details
Results 51–75 of 218
Results 51–75 of 218