Publications

Results 151–175 of 194
Skip to search filters

Damage predictions of aluminum thin-walled structures subjected to explosive loads

Gruda, Jeffrey D.; Corona, Edmundo C.; Gwinn, Kenneth W.; Phelan, James M.; Saul, WVenner S.; Reu, Phillip L.; Stofleth, Jerome H.; Haulenbeek, Kimberly K.; Larsen, Marvin E.

Predicting failure of thin-walled structures from explosive loading is a very complex task. The problem can be divided into two parts; the detonation of the explosive to produce the loading on the structure, and secondly the structural response. First, the factors that affect the explosive loading include: size, shape, stand-off, confinement, and chemistry of the explosive. The goal of the first part of the analysis is predicting the pressure on the structure based on these factors. The hydrodynamic code CTH is used to conduct these calculations. Secondly, the response of a structure from the explosive loading is predicted using a detailed finite element model within the explicit analysis code Presto. Material response, to failure, must be established in the analysis to model the failure of this class of structures; validation of this behavior is also required to allow these analyses to be predictive for their intended use. The presentation will detail the validation tests used to support this program. Validation tests using explosively loaded aluminum thin flat plates were used to study all the aspects mentioned above. Experimental measurements of the pressures generated by the explosive and the resulting plate deformations provided data for comparison against analytical predictions. These included pressure-time histories and digital image correlation of the full field plate deflections. The issues studied in the structural analysis were mesh sensitivity, strain based failure metrics, and the coupling methodologies between the blast and structural models. These models have been successfully validated using these tests, thereby increasing confidence of the results obtained in the prediction of failure thresholds of complex structures, including aircraft.

More Details

Digital image correlation through a rigid borescope

Reu, Phillip L.

There occasionally occur situations in field measurements where direct optical access to the area of interest is not possible. In these cases the borescope is the standard method of imaging. Furthermore, if shape, displacement, or strain are desired in these hidden locations, it would be advantageous to be able to do digital image correlation (DIC) through the borescope. This paper will present the added complexities and errors associated with imaging through a borescope for DIC. Discussion of non-radial distortions and their effects on the measurements, along with a possible correction scheme will be discussed.

More Details

Ultra-high speed imaging and DIC for explosive system observation

Reu, Phillip L.; Cooper, Marcia A.

Digital image correlation (DIC) and the tremendous advances in optical imaging are beginning to revolutionize explosive and high-strain rate measurements. This paper presents results obtained from metallic hemispheres expanded at detonation velocities. Important aspects of sample preparation and lighting of the image will be presented that are key considerations in obtaining images for DIC with frame rates at 1-million frames/second. Quantitative measurements of the case strain rate, expansion velocity and deformation will be presented. Furthermore, preliminary estimations of the measurement uncertainty will be discussed with notes on how image noise and contrast effect the measurement of shape and displacement. The data are then compared with analytical representations of the experiment.

More Details

Experimental validation of 2D uncertainty quantification for DIC

Reu, Phillip L.

Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

More Details

Experimental validation of equations for 2D DIC uncertainty quantification

Reu, Phillip L.

Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

More Details

Experimental validation of 2D uncertainty quantification for digital image correlation

Reu, Phillip L.

Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

More Details

Measurement of steel plate perforation tests with digital image correlation

Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2009

Reu, Phillip L.; VanGoethem, Doug; Córdova, Theresa E.

The results of a series of punch-through tests performed on steel plates are presented. The geometry consisted of circular plates with welded boundary condition penetrated by a conical shaped punch with either a spherical or flat cylindrical end. After initial failure, the conical portion of the punch was driven through the plate to exercise tearing mechanics. Tests were performed quasi-statically with a hydraulic actuator and dynamically using a high-capacity drop table. Deformation and strain were measured with a stereo DIC system. The quasi-static tests utilized a conventional direct-view DIC technique while the dynamic tests required development of an indirect-view technique using a mirror. Experimental details used to conduct the test series will be presented along with test results. Methods of assessing test-to-test repeatability will be discussed. DIC results will also be synchronized and compared with transducer data (displacement and strain). ©2009 Society for Experimental Mechanics Inc.

More Details

Doppler electron velocimeter-practical considerations for a useful tool

Society for Experimental Mechanics - 11th International Congress and Exhibition on Experimental and Applied Mechanics 2008

Reu, Phillip L.

The Doppler electron velocimeter (DEV) is a potentially new dynamic measurement system for the nano-scale. Electron microscopes have been used for many years now for visualizing extremely small samples, but the ability to make dynamic measurements has not existed. The DEV proceeds along the analogous lines of a laser Doppler velocimeter, which uses the Doppler shift of the wave to detect the velocity. The use of electron beams with their extremely short wavelengths overcomes the diffraction limit of light of approximately 1/2-micron to measure samples of current scientific interest in the nano-regime. Previous work has shown that Doppler shifting of electrons is theoretically possible, this paper examines whether a practical instrument can be built given inherent limitations of using electron beams as a probe source. Potential issues and their solutions, including electron beam coherence and interference will be presented. If answers to these problems can be found, the invention of the Doppler electron velocimeter could yield a completely new measurement concept at atomistic scales. © 2008 Society for Experimental Mechanics Inc.

More Details

Doppler electron velocimetry : notes on creating a practical tool

Reu, Phillip L.

The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

More Details
Results 151–175 of 194
Results 151–175 of 194