Publications

Results 51–75 of 194
Skip to search filters

The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation

Experimental Mechanics

Turner, Daniel Z.; Lehoucq, Richard B.; Reu, Phillip L.

Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.

More Details

A speckle patterning study for laboratory-scale DIC experiments

Conference Proceedings of the Society for Experimental Mechanics Series

Kramer, Sharlotte L.; Reu, Phillip L.; Bonk, Sarah

A “good” speckle pattern enables DIC to make its full-field measurements, but oftentimes this artistic part of the DIC setup takes a considerable amount of time to develop and evaluate for a given optical configuration. A catalog of well-quantified speckle patterns for various fields of view would greatly decrease the time it would take to start making DIC measurements. The purpose of this speckle patterning study is to evaluate various speckling techniques we had readily available in our laboratories for fields of view from around 100 mm down to 5 mm that are common for laboratory-scale experiments. The list of speckling techniques is not exhaustive: spray painting, UV-printing of computer-designed speckle patterns, airbrushing, and particle dispersion. First, we quantified the resolution of our optical configurations for each of the fields of view to determine the smallest speckle we could resolve. Second, we imaged several speckle patterns at each field of view. Third, we quantified the average and standard deviation of the speckle size, speckle contrast, and density to characterize the quality of the speckle pattern. Finally, we performed computer-aided sub-pixel translation of the speckle patterns and ran correlations to examine how well DIC tracked the pattern translations. We discuss our metrics for a “good” speckle pattern and outline how others may perform similar studies for their desired optical configurations.

More Details
Results 51–75 of 194
Results 51–75 of 194