Publications

Results 51–100 of 113
Skip to search filters

Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

Physical Review A

Kim, E.; Safavi-Naini, A.; Hite, D.A.; McKay, K.S.; Pappas, D.P.; Weck, Philippe F.; Sadeghpour, H.R.

The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, predicts a noise spectrum, in accordance with the measured values.

More Details

Chlorination of zirconium (0001) surface: A first-principles study

Kim, E.K.; Weck, Philippe F.; Borjas, R.B.; Poineau, F P.

Here, the mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by ~3 eV/Cl for dissociative adsorption of a single Cl2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism for Zr(0001) surface dissolution. Consistent with experimental findings, formation of ZrCl4 molecular products is also found to be dominant during Zr(0001) chlorination.

More Details

Chlorination of zirconium (0001) surface: A first-principles study

Kim, E.K.; Weck, Philippe F.; Poineau, F.P.; Paviet, P.P.

The mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by 3 eV/Cl for dissociative adsorption of a single Cl2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism for Zr(0001) surface dissolution. Finally, consistent with experimental findings, formation of ZrCl4 molecular products is also found to be dominant during Zr(0001) chlorination.

More Details

The On-line Waste Library (OWL): Usage and Inventory Status Report

Sassani, David C.; Jang, Jay J.; Mariner, Paul M.; Price, Laura L.; Rechard, Robert P.; Rigali, Mark J.; Rogers, Ralph R.; Stein, Emily S.; Walkow, Walter M.; Weck, Philippe F.

The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin). A potential DRep also appears to be safe in the range of geologic mined repository concepts, but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.

More Details

Uncloaking the thermodynamics of the studtite to metastudtite shear-induced transformation

Journal of Physical Chemistry C

Weck, Philippe F.; Kim, Eunja

The interplay between thermodynamics and mechanical properties in the transformation of studtite, (UO2)(O2)(H2O)2·2H2O, into metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on the surface of uranium dioxide exposed to water, is revealed using density functional perturbation theory. Phonon calculations within the quasi-harmonic approximation predict that the standard entropy change for the (UO2)(O2)(H2O)2·2H2O → (UO2)(O2)(H2O)2 + 2H2O reaction is ΔS0 = +80 J·mol-1·K-1 for the production of water in the liquid state and +389 J·mol-1·K-1 for water vapor. Similar to bulk H2O(l), the bulk modulus of (UO2)(O2)(H2O)2·2H2O increases with temperature, contrasting with (UO2)(O2)(H2O)2 which features the typical Anderson-Gruneisen temperature dependence of oxide solids. Upon removal of interstitial H2O in studtite, the most important changes in the shear modulus, the parameter limiting the mechanical stability, arise in the planes normal to chain propagation directions. The present findings have important implications for the dehydration of other hygroscopic materials.

More Details

Progress in Overcoming Materials Challenges with Supercritical CO2 Recompression Closed Brayton Cycles

Walker, Matthew W.; Walker, Matthew W.; Kruizenga, Alan M.; Kruizenga, Alan M.; Weck, Philippe F.; Weck, Philippe F.; Withey, Elizabeth A.; Withey, Elizabeth A.; Fleming, Darryn F.; Fleming, Darryn F.; Rochau, Gary E.; Rochau, Gary E.

The supercritical carbon dioxide (S - CO2) Brayton Cycle has gained significant attention in the last decade as an advanced power cycle capab le of achieving high efficiency power conversion. Sandia National Laboratories, with support from the U.S. Department of Energy Office of Nuclear Energy (US DOE - NE), has been conducting research and development in order to deliver a technology that is rea dy for commercialization. There are a wide range of materials related challenges that must be overcome for the success of this technology. At Sandia, recent work has focused on the following main areas: (1) Investigating the potential for system cost re duction through the introduction of low cost alloys in low temperature loop sections, (2) Identifying material options for 10MW RCBC systems, (3) Understanding and resolving turbine degradation, (4) Identifying gas foil bearing behavior in CO 2 , and (5) Ide ntifying the influence of gas chemistry on alloy corrosion. Progress in each of these areas is provided in this report.

More Details

Phosphorous dimerization in GaP high-pressure polymorph

Sandia journal manuscript; Not yet accepted for publication

Lavina, Barbara L.; Kim, Eunja K.; Cynn, Hyunchae C.; Weck, Philippe F.; Seaborg, Kelly S.; Siska, Emily S.; Meng, Yue M.; Evans, Williams E.

We report on the experimental and theoretical characterization of a novel GaP polymorph formed by laser heating of a single crystal of GaP-II in its stable region near 43 GPa. Thereby formed unstrained multigrain sample at 43 GPa and 1300 K, allowed high-resolution crystallographic analysis. We find an oS24 as an energetically optimized crystal structure contrary to oS8 reported by Nelmes et al. (1997). Our DFT calculation confirms a stable existence of oS24 between 18 – 50 GPa. The emergence of the oS24 structure is related to the differentiation of phosphorous atoms between those forming P-P dimers and those forming P-Ga bonds only. Bonding anisotropy explains the symmetry lowering with respect to what is generally expected for semiconductors high-pressure polymorphs. The metallization of GaP does not occur through a uniform change of the nature of its bonds but through the formation of an anisotropic phase containing different bond types.

More Details

Van der Waals forces and confinement in carbon nanopores: Interaction between CH4, COOH, NH3, OH, SH and single-walled carbon nanotubes

Chemical Physics Letters

Weck, Philippe F.; Kim, Eunja; Wang, Yifeng

Interactions between CH4, COOH, NH3, OH, SH and armchair (n,n) (n=4,7,14) and zigzag (n,0) (n=7,12,25) single-walled carbon nanotubes (SWCNTs) have been systematically investigated within the framework of dispersion-corrected density functional theory (DFT-D2). Endohedral and exohedral molecular adsorption on SWCNT walls is energetically unfavorable or weak, despite the use of C6/r6 pairwise London-dispersion corrections. The effects of pore size and chirality on the molecule/SWCNTs interaction were also assessed. Chemisorption of COOH, NH3, OH and SH at SWCNT edge sites was examined using a H-capped (7,0) SWCNT fragment and its impact on electrophilic, nucleophilic and radical attacks was predicted by means of Fukui functions.

More Details

Equation of state for technetium from X-ray diffraction and first-principle calculations

Journal of Physics and Chemistry of Solids

Mast, Daniel S.; Lavina, Barbara L.; Kim, Eunja K.; Siska, Emily S.; Weck, Philippe F.; Poineau, F.P.; Czerwinski, K R.; Forster, P M.

Here, the ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressureEquation of state for technetium from X-ray diffraction and first-principle calculations scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with an ambient isothermal bulk modulus of B0T=288 GPa and a first pressure derivative of B'=5.9(2) best represent the compression behavior of technetium metal.

More Details

Assessing Hubbard-corrected AM05+: U and PBEsol+ U density functionals for strongly correlated oxides CeO2 and Ce2O3

Physical Chemistry Chemical Physics

Weck, Philippe F.; Kim, Eunja

The structure-property relationships of bulk CeO2 and Ce2O3 have been investigated using AM05 and PBEsol exchange-correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+U) and density functional perturbation theory (DFPT+U). Compared with conventional PBE+U, RPBE+U, PW91+U and LDA+U functionals, AM05+U and PBEsol+U describe experimental crystalline parameters and properties of CeO2 and Ce2O3 with superior accuracy, especially when +U is chosen close to its value derived by the linear-response approach. The present findings call for a reexamination of some of the problematic oxide materials featuring strong f- and d-electron correlation using AM05+U and PBEsol+U.

More Details

Energetics of Sn2+ isomorphic substitution into hydroxylapatite: first-principles predictions

RSC Advances

Weck, Philippe F.; Kim, Eunja

The energetics of Sn2+ substitution into the Ca2+ sublattice of hydroxylapatite (HA), Ca10(PO4)6(OH)2, has been investigated within the framework of density functional theory. Calculations reveal that Sn2+ incorporation via coupled substitutions at Ca(ii) sites is energetically favourable up to a composition of Sn6Ca4(PO4)6(OH)2, and further substitutions at Ca(i) sites proceed once full occupancy of Ca(ii) sites by Sn2+ is achieved. Compositions of SnxCa10−x(PO4)6(OH)2 (x = 4-9) are predominant, with an optimal stoichiometry of Sn8Ca2(PO4)6(OH)2, and Sn-substituted HA follows approximately Vegard's law across the entire composition range.

More Details

Low energy electrons and swift ion track structure in PADC

Radiation Physics and Chemistry

Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

More Details

Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

Journal of Physical Chemistry A

Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.

More Details

Neutralization of Rubidium Adsorbate Electric Fields by Electron Attachment

Sandia journal manuscript; Not yet accepted for publication

Sedlacek, J.A.; Kim, E.K.; Rittenhouse, S.T.; Weck, Philippe F.; Sadeghpour, H.R.; Shaffer, J.P.

We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

More Details

Water versus DNA: New insights into proton track-structure modelling in radiobiology and radiotherapy

Physics in Medicine and Biology

Champion, C.; Quinto, M.A.; Monti, J.M.; Galassi, M.E.; Weck, Philippe F.; Fojón, O.A.; Hanssen, J.; Rivarola, R.D.

Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence - expressed in terms of total cross sections - as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.

More Details

Modeling of hydride precipitation and re-orientation

Tikare, Veena T.; Weck, Philippe F.; Mitchell, John A.

In this report, we present a thermodynamic-­based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-­direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as it is in the orthogonal directions.

More Details

On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation

RSC Advances

Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh's and Poisson's ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Debye temperatures of 294 and 271 K are predicted for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.

More Details

Evaluation of Used Fuel Disposition in Clay-Bearing Rock

Jove Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Zheng, L.Z.; Rutqvist, J.R.; Kim, K.W.; Houseworth, J.H.; Caporuscio, F.A.C.; Cheshire, M.C.; Palaich, S.P.; Norskog, K.E.; Zavarin, M.Z.; Wolery, T.J.W.; Jerden, J.J.; Copple, J.M.C.; Cruse, T.C.; Ebert, W.E.; Jove Colon, Carlos F.

Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barrier system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.

More Details

Thermodynamics of technetium: reconciling theory and experiment using density functional perturbation analysis

Dalton Transactions

Weck, Philippe F.; Kim, Eunja

The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. The predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ∼1600 K.

More Details

Relationship between crystal structure and thermo-mechanical properties of kaolinite clay: beyond standard density functional theory

Dalton Transactions

Weck, Philippe F.; Kim, Eunja; Jove Colon, Carlos F.

The structural, mechanical and thermodynamic properties of 1: 1 layered dioctahedral kaolinite clay, with ideal Al2Si2O5(OH)4 stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and Birch-Murnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.7-3.0% from room temperature up to its thermal stability limit.

More Details

Electron- and proton-induced ionization of pyrimidine

European Physical Journal. D, Atomic, Molecular, Optical and Plasma Physics

Champion, Christophe C.; Quinto, Michele A.; Weck, Philippe F.

This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.

More Details

Speciation of technetium peroxo complexes in sulfuric acid revisited

Journal of Radioanalytical and Nuclear Chemistry

Poineau, Frederic; German, Konstantin E.; Burton-Pye, Benjamin P.; Weck, Philippe F.; Kim, Eunja; Kriyzhovets, Olga; Safonov, Aleksey; Ilin, Viktor; Francesconi, Lynn C.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.

The reaction of Tc(+7) with H2O2 has been studied in H2SO4 and the speciation of technetium performed by UV–visible and 99-Tc NMR spectroscopy. UV–visible measurements show that for H2SO4 ≥ 9 M and H2O2 = 0.17 M, TcO3(OH)(H2O)2 reacts immediately and blue solutions are obtained, while no reaction occurs for H2SO4 < 9 M. The spectra of the blue solutions exhibit bands centered around 520 and 650 nm which are attributed to Tc(+7) peroxo species. Studies in 6 M H2SO4 show that TcO4− begins to react for H2O2 = 2.12 M and red solutions are obtained. The UV–visible spectra of the red species are identical to the one obtained from the reaction of TcO4− with H2O2 in HNO3 and consistent with the presence of TcO(O2)2(H2O)(OH). The 99-Tc NMR spectrum of the red solution exhibits a broad signal centered at +5.5 ppm vs TcO4− and is consistent with the presence of a low symmetry Tc(+7) molecule.

More Details

Proton track structure code in biological matter

Journal of Physics: Conference Series

Quinto, M.A.; Monti, J.M.; Galassi, M.E.; Weck, Philippe F.; Fojón, O.A.; Hanssen, J.; Rivarola, R.D.; Champion, C.

Several numerical codes for proton and electron transport in water - a commonly used surrogate of the living matter - have been reported in the literature. In the current work, we report on a home-made step-by-step Monte Carlo code, called TILDA-V, based on a complete set of multiple-differential and total cross sections for describing all the inelastic processes occurring throughout the slowing-down of protons in water and DNA.

More Details

Interaction of cesium adatoms with free-standing graphene and graphene-veiled SiO2 surfaces

RSC Advances

Weck, Philippe F.; Kim, Eunja; Biedermann, Grant B.

The interaction of Cs adatoms with mono- or bi-layered graphene (MLG and BLG), either free-standing or on a SiO2 substrate, was investigated using density functional theory. The most stable adsorption sites for Cs are found to be hollow sites on both graphene sheets and graphene-veiled SiO2(0001). Larger dipole moments are created when a MLG-veiled SiO2(0001) substrate is used for adsorption of Cs atoms compared to the adsorption on free-standing MLG, due to charge transfer occurring between the MLG and the SiO2 substrate. For the adsorption of Cs on BLG-veiled SiO2(0001) substrate, these differences are smoothed out and the binding energies corresponding to different sites are nearly degenerate; smaller dipole moments created by the Cs adatoms on BLG compared to MLG are also predicted.

More Details

Dehydration of uranyl nitrate hexahydrate to the trihydrate under ambient conditions as observed via dynamic infrared reflectance spectroscopy

Proceedings of SPIE - The International Society for Optical Engineering

Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

Uranyl nitrate is a key species in the nuclear fuel cycle, but is known to exist in different states of hydration, including the hexahydrate [UO2(NO3)2(H2O)6] (UNH) and the trihydrate [UO2(NO3)2(H2O)3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating it. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via known XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the hexahydrate.

More Details

Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory

Dalton Transactions

Weck, Philippe F.; Kim, Eunja; Tikare, Veena T.; Mitchell, John A.

The elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn3m polymorph of δ-ZrH1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P42/mcm polymorph. Elastic moduli predicted with the Voigt-Reuss-Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debye temperatures predicted for γ-ZrH, δ-ZrH1.5 and ε-ZrH2 are D = 299.7, 415.6 and 356.9 K, respectively, while D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.

More Details

Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

European Physical Journal D

Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; Baek, Woon Y.; Weck, Philippe F.

Electron-induced ionization of the tetrahydrofuran molecule, the commonly used surrogate of the DNA sugar-phosphate backbone, is theoretically described in this study within the 1st Born approximation. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

More Details

Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

Tikare, Veena T.; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe C.

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

More Details

Review of inputs provided to Jason Associates Corporation in support of RWEV-REP-001, the Analysis of Postclosure Groundwater Impacts report

Bryan, Charles R.; Weck, Philippe F.; Vaughn, P.; Arnold, Bill W.

Report RWEV-REP-001, Analysis of Postclosure Groundwater Impacts for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High Level Radioactive Waste at Yucca Mountain, Nye County, Nevada was issued by the DOE in 2009 and is currently being updated. Sandia National Laboratories (SNL) provided support for the original document, performing calculations and extracting data from the Yucca Mountain Performance Assessment Model that were used as inputs to the contaminant transport and dose calculations by Jason Associates Corporation, the primary developers of the DOE report. The inputs from SNL were documented in LSA-AR-037, Inputs to Jason Associates Corporation in Support of the Postclosure Repository Supplemental Environmental Impact Statement. To support the updating of the original Groundwater Impacts document, SNL has reviewed the inputs provided in LSA-AR-037 to verify that they are current and appropriate for use. The results of that assessment are documented here.

More Details
Results 51–100 of 113
Results 51–100 of 113