Publications

Results 26–45 of 45
Skip to search filters

Microstructural Modification and Healing of Additively Manufactured Parts by Electropulsing

Noell, Philip N.; Rodelas, Jeffrey R.; Ghanbari, Zahra G.; Laursen, Christopher M.

For many applications, the promises of additive manufacturing (AM) of rapid development cycles and fabrication of ready-to-use, geometrically-complex parts cannot be realized because of cumbersome thermal postprocessing. This postprocessing is necessary when the non- equilibrium microstructures produced by AM lead to poor material properties. This study investigated if electropulsing, the process of sending high-current-density electrical pulses through a metallic part, could be used to modify the material properties of AM parts. This process has been used to modify conventional wrought materials but has never been applied to AM materials. Two representative AM materials were examined: 316L stainless steel and A1Si10Mg. Two hours of annealing are needed to remove chemical microsegregation in AM 316L; using electropulsing, this was accomplished in 200 seconds. The ductility of AlSil0Mg parts was increased above that of the as-built material using electropulsing. This study demonstrated that electropulsing can be used to modify the microstructures of AM metals. ACKNOWLEDGEMENTS The authors would like to acknowledge Jay Carroll for beneficial discussions and supplying material. Also, the authors would like to acknowledge Zachary Casias, Peter Duran, John Laing, Sara Dickens, Celedonio Jaramillo, Renae Hickman, and Christina Profazi for their exceptional experimental support.

More Details

Do voids nucleate at grain boundaries during ductile rupture?

Acta Materialia

Noell, Philip N.; Carroll, Jay D.; Hattar, Khalid M.; Clark, Blythe C.; Boyce, Brad B.

In the absence of pre-existing failure-critical defects, the fracture or tearing process in deformable metals loaded in tension begins with the nucleation of internal cavities or voids in regions of elevated triaxial stress. While ductile rupture processes initiate at inclusions or precipitates in many alloys, nucleation in pure metals is often assumed to be associated with grain boundaries or triple junctions. This study presents ex situ observations of incipient, subsurface void nucleation in pure tantalum during interrupted uniaxial tensile tests using electron channeling contrast (ECC) imaging, electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). Instead of forming at grain boundaries, voids initiated at and grew along dislocation cell and cell block boundaries created by plastic deformation. Most of the voids were associated with extended, lamellar deformation-induced boundaries that run along the traces of the {110} or {112} planes, though a few voids initiated at low-angle dislocation subgrain boundaries. In general, a high density of deformation-induced boundaries was observed near the voids. TEM and TKD demonstrate that voids initiate at and grow along cell block boundaries. Two mechanisms for void nucleation in pure metals, vacancy condensation and stored energy dissipation, are discussed in light of these results. The observations of the present investigation suggest that voids in pure materials nucleate by vacancy condensation and subsequently grow by consuming dislocations.

More Details

Mechanisms for Ductile Rupture - FY16 ESC Progress Report

Boyce, Brad B.; Carroll, Jay D.; Noell, Philip N.; Bufford, Daniel C.; Clark, Blythe C.; Hattar, Khalid M.; Lim, Hojun L.; Battaile, Corbett C.

Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimental evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.

More Details
Results 26–45 of 45
Results 26–45 of 45