CONFIDANTE Research Questions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016
A 6-mm by 6-mm by 50-mm bar of stilbene was coupled on both ends to silicon photomultipliers (SiPMs) to assess the detector's position sensitivity to interactions throughout the bar. A Na-22 gamma ray source was collimated with a pair of lead bricks to produce a source beam that was used to irradiate five positions along the length of the bar. A logarithmic relationship between the ratio of the pulse heights obtained from the two SiPMs and the position of the collimated source was established. The standard deviation of the distribution of ratios from each measurement was propagated through the functional form to determine position resolution. The position resolution along the length of the bar was determined to have an average value of 4.9 mm.
2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016
We investigate the feasibility of constructing a data-driven distance metric for use in null-hypothesis testing in the context of arms-control treaty verification. The distance metric is used in testing the hypothesis that the available data are representative of a certain object or otherwise, as opposed to binary-classification tasks studied previously. The metric, being of strictly quadratic form, is essentially computed using projections of the data onto a set of optimal vectors. These projections can be accumulated in list mode. The relatively low number of projections hampers the possible reconstruction of the object and subsequently the access to sensitive information. The projection vectors that channelize the data are optimal in capturing the Mahalanobis squared distance of the data associated with a given object under varying nuisance parameters. The vectors are also chosen such that the resulting metric is insensitive to the difference between the trusted object and another object that is deemed to contain sensitive information. Data used in this study were generated using the GEANT4 toolkit to model gamma transport using a Monte Carlo method. For numerical illustration, the methodology is applied to synthetic data obtained using custom models for plutonium inspection objects. The resulting metric based on a relatively low number of channels shows moderate agreement with the Mahalanobis distance metric for the trusted object but enabling a capability to obscure sensitive information.
We present the design and performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20-30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8 0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5-10% level for a two hour scan time. Experimental performance was evaluated with various thicknesses of polyethylene. The detector response in terms of energy, particle identification, and timing are presented as well.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the American Chemical Society
A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicated improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. Optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir3+, respectively.
IEEE Transactions on Nuclear Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Abstract not provided.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.
In recent years, the concept of Zero Knowledge Protocols (ZKP) as a useful approach to nuclear warhead verification has become increasingly popular. Several implementations of ZKP have been proposed, driving technology development toward proof of concept demonstrations. Whereas proposed implementations seem to fall within the general class of template-based techniques, all physical implementations of ZKPs proposed to date have a complication: once the instrumentation is prepared, it is no longer authenticatable; the instrument physically contains sensitive information. In this work we explore three different concepts that may offer more authenticatable and practical ZKP implementations and evaluate the sensitive information that may be at risk when doing so: sharing a subset of detector counts in a preloaded image (with spatial information removed), real-time image subtraction, and a new concept, CONfirmation using a Fast-neutron Imaging Detector with Anti-image NULL-positive Time Encoding (CONFIDANTE). CONFIDANTE promises to offer an almost ideal implementation of ZKP: a positive result is indicated by a constant rate at all times enabling the monitoring party the possibility of full access to the instrument before, during, and after confirmation. A prototype of CONFIDANTE was designed, built, and its performance evaluated in a series of measurements of several objects including a set of plutonium dioxide Hemispheres. Very encouraging results proving feasibility are presented. 1 Rebecca is currently a graduate student in Nuclear Engineering at UC Berkeley
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this work we investigate a method that confirms the operability of neutron detectors requiring neither radiological sources nor radiation-generating devices. This is desirable when radiological sources are not available, but confidence in the functionality of the instrument is required. The “source”, based on the production of neutrons in high-Z materials by muons, provides a tagged, low-background and consistent rate of neutrons that can be used to check the functionality of or calibrate a detector. Using a Monte Carlo guided optimization, an experimental apparatus was designed and built to evaluate the feasibility of this technique. Through a series of trial measurements in a variety of locations we show that gated muon-induced neutrons appear to provide a consistent source of neutrons (35.9 ± 2.3 measured neutrons/10,000 muons in the instrument) under normal environmental variability (less than one statistical standard deviation for 10,000 muons) with a combined environmental + statistical uncertainty of ~18% for 10,000 muons. This is achieved in a single 21-22 minute measurement at sea level.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
We present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20–30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5–10% level for a two hour scan time.
2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
The time-correlated pulse-height (TCPH) distribution can be used to differentiate between multiplying (e.g 235U, 239Pu) and non-multiplying (e.g Am-Li, 252Cf) sources. In the past, this approach proved effective at characterizing the multiplication of alpha phase plutonium metal through a passive measurement. Recently, Sandia National Laboratories has completed a measurement campaign with its new Correlated Radiation Signature (CoRS) system involving active interrogation of highly enriched uranium (HEU) with an Am-Li source. An additional obstacle was introduced to the measurement configuration by shielding the HEU with depleted uranium (DU). Simulation results have proven Am-Li source to be a suitable interrogating source because of its relatively low-energy neutron spectrum. The TCPH distribution was successfully used to determine the presence of a multiplying medium inside DU shells. The correlation between multiplication and an empirical parameters broke down for externally driven configurations, but in all cases the presence of a multiplying source was detected.
2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
Our previous conference report on this instrument emphasized its use for fast-neutron imaging spectroscopy. We describe here its additional measurement capabilities, namely active interrogation, time-correlated pulse-height multiplication measurements, and gamma imaging.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.