Publications

Results 1–200 of 214
Skip to search filters

System Response Characterization for a d–t Neutron Radiography System

Sweany, Melinda; Weinfurther, Kyle J.; Sjoberg, Kurt C.; Marleau, Peter M.

We report the system response of a pixelated associated particle imaging (API) neutron radiography system. The detector readout currently consists of a 2x2 array of organic glass scintillator detectors, each with an 8x8 array of optically isolated pixels that match the size and pitch of the ARRAYJ-60035-64P-PCB Silicon Photomultiplier (SiPM) array from SensL/onsemi with 6x6 mm2 SiPMs. The alpha screen of the API deuterium-tritium neutron generator is read out with the S13361-3050AE-08 from Hamamatsu, which is an 8x8 array of 3x3 mm2 SiPMs. Data from the 320 channel system is acquired with the TOFPET2-based readout system. We present the predicted imaging capability of an eventual 5x5 detector array, the waveform-based energy and pulse shape characterization of the individual detectors, and the timing and energy response from the TOFPET2 system.

More Details

Open Radiation Monitoring: Histogram Builder Module Design

Maierhafer, Daniel M.; Polack, John K.; Marleau, Peter M.; Hammon, Steven H.; Helguero, Rachel R.; Geyer, Christian G.

The Open Radiation Monitoring Project seeks to develop and demonstrate a modular radiation detection architecture designed specifically for use in arms control treaty verification (ACTV) applications that will facilitate rapid development of trusted systems to meet the needs of potential future treaties. A modular architecture can be used to reduce more complex systems to a series of single purpose building blocks, thereby facilitating equipment inspection and in turn building trust in the equipment by all treaty parties. Furthermore, a modular architecture can be used to control data flow within the measurement system, reducing the risk of "hidden switches" and constraining the amount of sensitive information that could potentially be inadvertently leaked. This report details the first revision of a prototype circuit that will convert analog pulses directly into a histogrammed data set for further processing. The circuit was designed with both spectroscopy and multiplicity analysis in mind but can, in principle, be used to reduce any raw data stream into a histogram. The number of output channels is limited, and the histogram bin ranges are user configurable to allow for non-uniform and discontinuous bins, which makes it possible to restrict the information being passed down stream if desired. Pulse processing relies entirely on analog circuitry and non- programmable logic, which enables operation without the need for a central processor or other programmable control unit. The circuit remains untested under the Open Radiation Monitoring project due to the closure of the sponsoring program. However, further development and testing is scheduled to take place in support of a purpose-built trusted verification system development effort known as COGNIZANT, which demonstrates the potential benefit of developing a suite of modular trusted system components.

More Details

Improved Localization Precision and Angular Resolution of a Cylindrical, Time-Encoded Imaging System from Adaptive Detector Movements

IEEE Transactions on Nuclear Science

Shah, Niral P.; Marleau, Peter M.; Fessler, Jeffrey A.; Chichester, David L.; Wehe, David K.

To the first order, the localization precision and angular resolution of a cylindrical, time-encoded imaging (c-TEI) system is governed by the geometry of the system. Improving either measure requires increasing the mask radius or decreasing the detector diameter, both of which are undesirable. We propose an alternative option of repositioning the detector within the mask to increase the detector-to-mask distance in the direction of a source, thereby improving the localization precision and angular resolution in that direction. Since the detector-to-mask distance only increases for a small portion of the field of view (FOV), we propose implementing adaptive imaging where one leverages data collected during the measurement to optimize the system configuration. This article utilizes both simulations and experiments to set upper bounds on the potential gain from adaptive detector movements for one and two sources in the FOV. When only one source is present, adaptive detector movements can improve the localization precision and angular resolution by 20% for a source at 90 cm and by 32% for a far-field source. When two sources are present, adaptive detector movements can improve localization precision and angular resolution by up to 50% for sources that are 10° apart (90 cm from the system). We experimentally verify these results through maximum likelihood estimation of the source position(s) and image reconstruction of point sources that are close together. As a demonstration of an adaptive imaging algorithm, we image a complex arrangement of special nuclear material at the Zero Power Physics Reactor facility at Idaho National Laboratory.

More Details

Single Volume Scatter Camera: Optically Segmented Effort

Sweany, Melinda; Adamek, E A.; Alhajaji, H A.; Brown, James R.; Balathy, John B.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, J C.; Dorril, R D.; Druetzler, A D.; Elam, J E.; Febbraro, M F.; Feng, Patrick L.; Folsom, Michael W.; Gabella, G G.; Galindo-Tellez, A G.; Goldblum, B G.; Hausladen, P H.; Kaneshige, N.K.; Keffe, Kevin K.; Laplace, T, A.; Maggi, Paul E.; Mane, A M.; Manfredi, J M.; Marleau, Peter M.; Mattingly, J.M.; Mishra, M M.; Moustafa, A M.; Nattress, J N.; Nishimura, K N.; Pinto-Souza, B P.; Steele, John T.; Takahashi, E T.; Ziock, K Z.

Abstract not provided.

Single Volume Scatter Camera: Optically Segmented Effort - Single Slide Overview

Sweany, Melinda; Adamek, E A.; Alhajaji, H A.; Brown, James R.; Balathy, John B.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, J C.; Dorril, R D.; Druetzler, A D.; Elam, J E.; Febbraro, M F.; Feng, Patrick L.; Folsom, Michael W.; Gabella, G G.; Galindo-Tellez, A G.; Goldblum, B G.; Hausladen, P H.; Kaneshige, N.K.; Keffe, Kevin K.; Laplace, T, A.; Maggi, Paul E.; Mane, A M.; Manfredi, J M.; Marleau, Peter M.; Mattingly, J.M.; Mishra, M M.; Moustafa, A M.; Nattress, J N.; Nishimura, K N.; Pinto-Souza, B P.; Steele, John T.; Takahashi, E T.; Ziock, K Z.

Abstract not provided.

Current status of an optically-segmented single-volume scatter camera for neutron imaging

Journal of Physics: Conference Series

Tellez-Galindo, A.; Brown, J.A.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Carlson, Joseph S.; Dorrill, R.; Druetzler, A.; Elam, J.; Febbraro, M.; Feng, P.; Folsom, M.; Galino-Tellez, A.; Goldblum, B.L.; Hausladen, P.; Kaneshige, N.; Keefe, K.; Laplace, T.A.; Learned, J.G.; Mane, A.; Manfredi, J.J.; Marleau, Peter M.; Mattingly, J.; Mishra, M.; Moustafa, A.; Nattress, J.; Nishimura, K.; Steele, J.; Sweany, Melinda; Weinfurther, K.; Ziock, K.

The Single-Volume Scatter Camera (SVSC) approach to kinematic neutron imaging, in which an incident neutron’s direction is reconstructed via multiple neutron-proton scattering events, potentially offers much greater efficiency and portability than current systems. In our first design of an Optically-Segmented (OS) SVSC, the detector consists of an 8×8 array of 5×5×200 mm3 bars of EJ-204 scintillator wrapped in Teflon tape, optically coupled with SensL J-series 6 x 6 mm Silicon Photomultiplier (SiPM) arrays, all inside an aluminum frame that serves as a dark box. The SiPMs are read out using custom (multi-GSPS) waveform sampling electronics. In this work, construction, characterization, and electronics updates are reported. The position, time, and energy resolutions of individual bars were obtained by measuring different scintillators with different reflectors. This work was carried out in parallel at the University of Hawaii and at Sandia National Laboratories and resulted in the preliminary design of the camera. Monte-Carlo simulations using the Geant4 toolkit were carried out for individual scintillator bars, as well as the array setup. A custom analysis using ROOT libraries in C++ simulated the SiPM response from Geant4 photon hits. This analysis framework is under development and will allow for seamless comparisons between experimental and simulated data.

More Details

Imaging Special Nuclear Material using a Handheld Dual Particle Imager

Scientific Reports

Steinberger, William M.; Ruch, Marc L.; Giha, Nathan; Fulvio, Angela D.; Marleau, Peter M.; Clarke, Shaun D.; Pozzi, Sara A.

A compact radiation imaging system capable of detecting, localizing, and characterizing special nuclear material (e.g. highly-enriched uranium, plutonium…) would be useful for national security missions involving inspection, emergency response, or war-fighters. Previously-designed radiation imaging systems have been large and bulky with significant portions of volume occupied by photomultiplier tubes (PMTs). The prototype imaging system presented here uses silicon photomultipliers (SiPMs) in place of PMTs because SiPMs are much more compact and operate at low power and voltage. The SiPMs are coupled to the ends of eight stilbene organic scintillators, which have an overall volume of 5.74 × 5.74 × 7.11 cm3. The prototype dual-particle imager’s capabilities were evaluated by performing measurements with a 252Cf source, a sphere of 4.5 kg of alpha-phase weapons-grade plutonium known as the BeRP ball, a 6 kg sphere of neptunium, and a canister of 3.4 kg of plutonium oxide (7% 240Pu and 93% 239Pu). These measurements demonstrate neutron spectroscopic capabilities, a neutron image resolution for a Watt spectrum of 9.65 ± 0.94° in the azimuthal direction and 22.59 ± 5.81° in the altitude direction, imaging of gamma rays using organic scintillators, and imaging of multiple sources in the same field of view.

More Details

The Single-Volume Scatter Camera

Manfredi, Juan M.; Adamek, Evan A.; Brown, Joshua B.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, Joshua C.; Dorrill, Ryan D.; Druetzler, Andrew D.; Elam, Jeff W.; Feng, Patrick L.; Folsom, Micah F.; Galindo-Tellez, Aline G.; Goldblum, Bethany L.; Hausladen, Paul H.; Kaneshige, Nathan K.; Keefe, Kevin P.; Laplace, Thibault L.; Learned, John L.; Mane, Anil M.; Marleau, Peter M.; Mattingly, John M.; Mishra, Mudit M.; Moustafa, Ahmed M.; Nattress, Jason N.; Steele, John T.; Sweany, Melinda; Weinfurther, Kyle J.; Ziock, Klaus-Peter Z.

Abstract not provided.

Characterization of a silicon photo-multiplier array with summing board as a photo-multiplier tube replacement in organic scintillator assemblies

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Sweany, Melinda; Marleau, Peter M.; Allwork, C.; Kallenbach, G.; Hammon, Steven H.

We report on the energy, timing, and pulse-shape discrimination performance of cylindrical 5.08 cm diameter × 5.08 cm thick and 7.62 cm diameter × 7.62 cm thick trans-stilbene crystals read out with the passively summed output of three different commercial silicon photo-multiplier arrays. Our results indicate that using the summed output of an 8 × 8 array of SiPMs provides performance competitive with photo-multiplier tubes for many neutron imaging and correlated particle measurements. For a 5.08 cm diameter × 5.08 cm thick crystal read out with SensL's ArrayJ-60035_64P-PCB, which had the best overall properties, we measure the energy resolution as 17.8 ± 0.8% at 341 keVee (σ/E), the timing resolution in the 180–400 keVee range as 236 ± 61 ps (σ), and the pulse-shape discrimination figure-of-merit as 2.21 ± 0.03 in the 230–260 keVee energy range. For a 7.62 cm diameter × 7.62 cm thick crystal read out with SensL's ArrayJ-60035_64P-PCB, we measure the energy resolution as 21.9 ± 2.3% at 341 keVee, the timing resolution in the 180–400 keVee range as 518 ± 42 ps, and the pulse-shape discrimination figure-of-merit as 1.49 ± 0.01 in the 230–260 keVee energy range. These results enable many scintillator-based instruments to enjoy the size, robustness, and power benefits of silicon photo-multiplier arrays as replacement for the photo-multiplier tubes that are predominantly used today.

More Details

The single-volume scatter camera

Proceedings of SPIE - The International Society for Optical Engineering

Manfredi, Juan J.; Adamek, Evan; Brown, Joshua A.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Cates, Joshua; Dorrill, Ryan; Druetzler, Andrew; Elam, Jeff; Feng, Patrick L.; Folsom, Micah; Galindo-Tellez, Aline; Goldblum, Bethany L.; Hausladen, Paul; Kaneshige, Nathan; Keefe, Kevin P.; Laplace, Thibault A.; Learned, John G.; Mane, Anil; Marleau, Peter M.; Mattingly, John; Mishra, Mudit; Moustafa, Ahmed; Nattress, Jason; Nishimura, Kurtis; Steele, John T.; Sweany, Melinda; Weinfurther, Kyle J.; Ziock, Klaus P.

The multi-institution Single-Volume Scatter Camera (SVSC) collaboration led by Sandia National Laboratories (SNL) is developing a compact, high-efficiency double-scatter neutron imaging system. Kinematic emission imaging of fission-energy neutrons can be used to detect, locate, and spatially characterize special nuclear material. Neutron-scatter cameras, analogous to Compton imagers for gamma ray detection, have a wide field of view, good event-by-event angular resolution, and spectral sensitivity. Existing systems, however, suffer from large size and/or poor efficiency. We are developing high-efficiency scatter cameras with small form factors by detecting both neutron scatters in a compact active volume. This effort requires development and characterization of individual system components, namely fast organic scintillators, photodetectors, electronics, and reconstruction algorithms. In this presentation, we will focus on characterization measurements of several SVSC candidate scintillators. The SVSC collaboration is investigating two system concepts: the monolithic design in which isotropically emitted photons are detected on the sides of the volume, and the optically segmented design in which scintillation light is channeled along scintillator bars to segmented photodetector readout. For each of these approaches, we will describe the construction and performance of prototype systems. We will conclude by summarizing lessons learned, comparing and contrasting the two system designs, and outlining plans for the next iteration of prototype design and construction.

More Details

Position and Timing Resolution Measurements ofOrganic-Glass scintillator bars for the OpticallySegmented Single-Volume Scatter Camera

Sweany, Melinda; Brown, Jason B.; Cabrera-Palmer, Belkis C.; Carlson, Joseph S.; Dorrill, R D.; Druetzler, A D.; Elam, J E.; Febbraro, M F.; Feng, Patrick L.; Folsom, Michael W.; Galino-Tellez, A G.; Goldblum, B G.; Hausladen, P H.; Kaneshige, N K.; Keffe, K K.; Laplace, T L.; Learned, J L.; Mane, A M.; Manfredi, Juan M.; Marleau, Peter M.; Mattingly, J M.; Mishra, M M.; Moustafa, A M.; Nattress, J N.; Steele, John T.; Weinfurther, K W.; Ziock, K Z.

Abstract not provided.

Design and Evaluation of a Pixelated PSD-capable Scintillator Detector with SiPM Readout

Sweany, Melinda; Marleau, Peter M.; Hammon, Steven H.; Kallenbach, Gene K.; Polack, John K.

We present the detector response comparison between a 10x10 pixellated array of scintillator read out with Anger logic using four 2" Hamamatsu R7724-100 super bialkali photomulti- plier tubes (PMT) and a custom Silicon photomultiplier (SiPM) board consisting of 100 C-series 6x6 mm SiPMs from SensL. An array of these pixellated detectors are currently used in the Neutron Coded Aperture (NCA) imaging system. The energy, timing and pulse shape discrimination response using both readout schemes are presented, along with an anal- ysis of multiple scatter events occurring within the block. An evaluation of the impact of photodetector readout on the overall detection efficiency and imaging accuracy is presented.

More Details

Characterization of a Silicon photo-multiplier summing breakout board for photo-multiplier tube replacement

Sweany, Melinda; Marleau, Peter M.; Kallenbach, Gene A.

We present the relative timing and pulse-shape discrimination performance of a H1949-50 photomultiplier tube to SensL ArrayX-B0B6_64S coupled to a SensL ArrayC-60035-64P- PCB Silicon Photomultiplier array. The goal of this work is to enable the replacement of photomultiplier readout of scintillators with Silicon Photomultiplier devices, which are more robust and have higher particle detection efficiency. The report quantifies the degradation of these performance parameters using commercial off the shelf summing circuits, and motivates the development of an improved summing circuit: the pulse-shape descrimination figure-of- merit drops from 1.7 at 500 keVee to 1.4, and the timing resolution (a) is 288 ps for the photomultiplier readout and approximately 1 ns for the Silicon Photomultiplier readout. A degradation of this size will have a large negative impact on any device that relies on timing coincidence or pulse-shape discrimination to detect neutron interactions, such as neutron kinematic imaging or multiplicity measurements.

More Details

Progress toward a compact high-efficiency neutron scatter camera

Brown, Joshua A.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Druetzler, Andy D.; Elam, Jeff W.; Febbraro, Michael F.; Feng, Patrick L.; Folsom, Micah F.; Goldblum, Bethany L.; Hausladen, Paul H.; Kaneshige, Nate K.; Laplace, Thibault L.; Learned, John L.; Mane, Anil M.; Marleau, Peter M.; Mattingly, John M.; Mishra, Mudit M.; Nishimura, Kurtis N.; Steele, John T.; Sweany, Melinda; Ziock, Klaus Z.

Abstract not provided.

Special Nuclear Material Detection and Monitoring by Environmental Activation Products Detection

Marleau, Peter M.; Shinner, Matthew S.

Through a series of measurements with a high purity germanium detector, we have established that the past presence of neutron emitting material can be detected by the decay of activation products in aluminum containers, tungsten shielding, and concrete floors even several days after last exposure. The time since last exposure can also be estimated by the gamma-ray detection rate. These findings may lead to interesting new CONOPS in the detection of illicit SNM or the verification of the absence (or presence) of SNM containing objects in facilities and/or transit even after the material has been removed.

More Details

Feasibility of Single-sided 3D elemental imaging

Sweany, Melinda; Gerling, Mark D.; Marleau, Peter M.; Monterial, Mateusz M.

We present single-sided 3D image reconstruction and neutron spectrum of non-nuclear material interrogated with a deuterium-tritium neutron generator. The results presented here are a proof-of-principle of an existing technique previously used for nuclear material, applied to non-nuclear material. While we do see excess signatures over background, they do not have the expected form and are currently un-identified.

More Details

Source detection at 100 meter standoff with a time-encoded imaging system

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Brennan, James S.; Brubaker, Erik B.; Gerling, Mark D.; Marleau, Peter M.; Monterial, Mateusz M.; Nowack, A.; Schuster, P.; Sturm, B.; Sweany, Melinda

We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ∼1mCi252Cf radiological source at 100m standoff with 90% detection efficiency and 10% false positives against background in 12min. This same detection efficiency is met at 15s for a 40m standoff, and 1.2s for a 20m standoff.

More Details

Position sensitivity within a bar of stilbene coupled to silicon photomultipliers

2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016

Ruch, Marc L.; Marleau, Peter M.; Pozzi, Sara A.

A 6-mm by 6-mm by 50-mm bar of stilbene was coupled on both ends to silicon photomultipliers (SiPMs) to assess the detector's position sensitivity to interactions throughout the bar. A Na-22 gamma ray source was collimated with a pair of lead bricks to produce a source beam that was used to irradiate five positions along the length of the bar. A logarithmic relationship between the ratio of the pulse heights obtained from the two SiPMs and the position of the collimated source was established. The standard deviation of the distribution of ratios from each measurement was propagated through the functional form to determine position resolution. The position resolution along the length of the bar was determined to have an average value of 4.9 mm.

More Details

Null-hypothesis testing using distance metrics for verification of arms-control treaties

2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016

Khalil, Mohammad K.; Brubaker, Erik B.; Hilton, Nathan R.; Kupinski, Matthew A.; MacGahan, Christopher J.; Marleau, Peter M.

We investigate the feasibility of constructing a data-driven distance metric for use in null-hypothesis testing in the context of arms-control treaty verification. The distance metric is used in testing the hypothesis that the available data are representative of a certain object or otherwise, as opposed to binary-classification tasks studied previously. The metric, being of strictly quadratic form, is essentially computed using projections of the data onto a set of optimal vectors. These projections can be accumulated in list mode. The relatively low number of projections hampers the possible reconstruction of the object and subsequently the access to sensitive information. The projection vectors that channelize the data are optimal in capturing the Mahalanobis squared distance of the data associated with a given object under varying nuisance parameters. The vectors are also chosen such that the resulting metric is insensitive to the difference between the trusted object and another object that is deemed to contain sensitive information. Data used in this study were generated using the GEANT4 toolkit to model gamma transport using a Monte Carlo method. For numerical illustration, the methodology is applied to synthetic data obtained using custom models for plutonium inspection objects. The resulting metric based on a relatively low number of channels shows moderate agreement with the Mahalanobis distance metric for the trusted object but enabling a capability to obscure sensitive information.

More Details

Enabling Explosives and Contraband Detection

Sweany, Melinda; Marleau, Peter M.; Monterial, Mateusz M.

We present the design and performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20-30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8 0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5-10% level for a two hour scan time. Experimental performance was evaluated with various thicknesses of polyethylene. The detector response in terms of energy, particle identification, and timing are presented as well.

More Details

Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination

Journal of the American Chemical Society

Carlson, Joseph S.; Marleau, Peter M.; Zarkesh, Ryan A.; Feng, Patrick L.

A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicated improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. Optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir3+, respectively.

More Details

Single-View 3-D Reconstruction of Correlated Gamma-Neutron Sources

IEEE Transactions on Nuclear Science

Monterial, Mateusz M.; Marleau, Peter M.; Pozzi, Sara A.

We describe a new method of 3-D image reconstruction of neutron sources that emit correlated gammas (e.g., Cf-252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source's intrinsic property of coincidence gamma and neutron emission. As a result, only a single-view measurement of the source is required to perform the 3-D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutron double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of the cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique's potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). These simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.

More Details

Multiplication and Presence of Shielding Material from Time-Correlated Pulse-Height Measurements of Subcritical Plutonium Assemblies

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Monterial, Mateusz M.; Marleau, Peter M.; Paff, Marc; Clarke, Shaun; Pozzi, Sara

We present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with both multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.

More Details

Linear models to perform treaty verification tasks for enhanced information security

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik B.; Hilton, Nathan R.; Marleau, Peter M.

Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.

More Details

Investigation into Practical Implementations of a Zero Knowledge Protocol

Marleau, Peter M.; Krentz-Wee, Rebecca E.

In recent years, the concept of Zero Knowledge Protocols (ZKP) as a useful approach to nuclear warhead verification has become increasingly popular. Several implementations of ZKP have been proposed, driving technology development toward proof of concept demonstrations. Whereas proposed implementations seem to fall within the general class of template-based techniques, all physical implementations of ZKPs proposed to date have a complication: once the instrumentation is prepared, it is no longer authenticatable; the instrument physically contains sensitive information. In this work we explore three different concepts that may offer more authenticatable and practical ZKP implementations and evaluate the sensitive information that may be at risk when doing so: sharing a subset of detector counts in a preloaded image (with spatial information removed), real-time image subtraction, and a new concept, CONfirmation using a Fast-neutron Imaging Detector with Anti-image NULL-positive Time Encoding (CONFIDANTE). CONFIDANTE promises to offer an almost ideal implementation of ZKP: a positive result is indicated by a constant rate at all times enabling the monitoring party the possibility of full access to the instrument before, during, and after confirmation. A prototype of CONFIDANTE was designed, built, and its performance evaluated in a series of measurements of several objects including a set of plutonium dioxide Hemispheres. Very encouraging results proving feasibility are presented. 1 Rebecca is currently a graduate student in Nuclear Engineering at UC Berkeley

More Details

In-situ Calibration of Detectors using Muon-induced Neutrons

Marleau, Peter M.; Reyna, David R.

In this work we investigate a method that confirms the operability of neutron detectors requiring neither radiological sources nor radiation-generating devices. This is desirable when radiological sources are not available, but confidence in the functionality of the instrument is required. The “source”, based on the production of neutrons in high-Z materials by muons, provides a tagged, low-background and consistent rate of neutrons that can be used to check the functionality of or calibrate a detector. Using a Monte Carlo guided optimization, an experimental apparatus was designed and built to evaluate the feasibility of this technique. Through a series of trial measurements in a variety of locations we show that gated muon-induced neutrons appear to provide a consistent source of neutrons (35.9 ± 2.3 measured neutrons/10,000 muons in the instrument) under normal environmental variability (less than one statistical standard deviation for 10,000 muons) with a combined environmental + statistical uncertainty of ~18% for 10,000 muons. This is achieved in a single 21-22 minute measurement at sea level.

More Details

Design and expected performance of a fast neutron attenuation probe for light element density measurements

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Sweany, Melinda; Marleau, Peter M.

We present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20–30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5–10% level for a two hour scan time.

More Details

Detection and characterization of shielded highly enriched uranium under active interrogation through time correlated fission events

2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015

Monterial, Mateusz M.; Marleau, Peter M.; Pozzi, Sara A.

The time-correlated pulse-height (TCPH) distribution can be used to differentiate between multiplying (e.g 235U, 239Pu) and non-multiplying (e.g Am-Li, 252Cf) sources. In the past, this approach proved effective at characterizing the multiplication of alpha phase plutonium metal through a passive measurement. Recently, Sandia National Laboratories has completed a measurement campaign with its new Correlated Radiation Signature (CoRS) system involving active interrogation of highly enriched uranium (HEU) with an Am-Li source. An additional obstacle was introduced to the measurement configuration by shielding the HEU with depleted uranium (DU). Simulation results have proven Am-Li source to be a suitable interrogating source because of its relatively low-energy neutron spectrum. The TCPH distribution was successfully used to determine the presence of a multiplying medium inside DU shells. The correlation between multiplication and an empirical parameters broke down for externally driven configurations, but in all cases the presence of a multiplying source was detected.

More Details

Additional capabilities of a compact neutron scatter camera: Active interrogation, time-correlated pulse-height multiplication measurements, and gamma imaging

2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015

Goldsmith, John E.; Brennan, James S.; Gerling, Mark D.; Marleau, Peter M.; Monterial, Mateusz M.

Our previous conference report on this instrument emphasized its use for fast-neutron imaging spectroscopy. We describe here its additional measurement capabilities, namely active interrogation, time-correlated pulse-height multiplication measurements, and gamma imaging.

More Details

Demonstration of two-dimensional time-encoded imaging of fast neutrons

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Brennan, James S.; Brubaker, Erik B.; Gerling, Mark D.; Marleau, Peter M.; McMillan, K.; Nowack, A.; Galloudec, N.R.; Sweany, Melinda

We present a neutron detector system based on time-encoded imaging, and demonstrate its applicability toward the spatial mapping of special nuclear material. We demonstrate that two-dimensional fast-neutron imaging with 2° resolution at 2 m stand-off is feasible with only two instrumented detectors.

More Details

Advanced Imaging Algorithms for Radiation Imaging Systems

Marleau, Peter M.

The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

More Details

Application of Bayes' theorem for pulse shape discrimination

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Monterial, Mateusz; Marleau, Peter M.; Clarke, Shaun; Pozzi, Sara

A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. This allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am-Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.

More Details

Report on a Zero-Knowledge Protocal Tabletop Exercise

Marleau, Peter M.; Brubaker, Erik B.; Deland, Sharon M.; Hilton, Nathan R.; McDaniel, Michael M.; Schroeppel, Richard C.; Seager, Kevin D.; Stoddard, Mary C.; MacArthur, Duncan M.

This report summarizes the discussion and conclusions reached during a table top exercise held at Sandia National Laboratories, Albuquerque on September 3, 2014 regarding a recently described approach for nuclear warhead verification based on the cryptographic concept of a zero-knowledge protocol (ZKP) presented in a recent paper authored by Glaser, Barak, and Goldston. A panel of Sandia National Laboratories researchers, whose expertise includes radiation instrumentation design and development, cryptography, and arms control verification implementation, jointly reviewed the paper and identified specific challenges to implementing the approach as well as some opportunities. It was noted that ZKP as used in cryptography is a useful model for the arms control verification problem, but the direct analogy to arms control breaks down quickly. The ZKP methodology for warhead verification fits within the general class of template-based verification techniques, where a reference measurement is used to confirm that a given object is like another object that has already been accepted as a warhead by some other means. This can be a powerful verification approach, but requires independent means to trust the authenticity of the reference warhead - a standard that may be difficult to achieve, which the ZKP authors do not directly address. Despite some technical challenges, the concept of last-minute selection of the pre-loads and equipment could be a valuable component of a verification regime.

More Details

Random mask optimization for fast neutron coded aperture imaging

Sandia journal manuscript; Not yet accepted for publication

Marleau, Peter M.; Brubaker, Erik B.; McMillan, Kyle M.

In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.

More Details

Preliminary study of the inclusion of Water-based Liquid Scintillator in the WATCHMAN Detector

Sweany, Melinda; Feng, Patrick L.; Marleau, Peter M.

This note summarizes an effort to characterize the effects of adding water-based liquid scintillator to the WATCHMAN detector. A detector model was built in the Geant4 Monte Carlo toolkit, and the position reconstruction of positrons within the detector was compared with and without scintillator. This study highlights the need for further modeling studies and small-scale experimental studies before inclusion into a large-scale detector, as the benefits compared to the associated costs are unclear.

More Details

Time-Encoded Imagers

Marleau, Peter M.; Brubaker, Erik B.

This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

More Details

A High-Sensitivity Fast Neutron Imager

Goldsmith, John E.; Brennan, James S.; Brubaker, Erik B.; Cabrera-Palmer, Belkis C.; Gerling, Mark D.; Marleau, Peter M.; Mascarenhas, Nick M.; Reyna, David R.

A wide range of NSC (Neutron Scatter Camera) activities were conducted under this lifecycle plan. This document outlines the highlights of those activities, broadly characterized as system improvements, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.

More Details

Time-Encoded Imagers

Marleau, Peter M.; Brubaker, Erik B.; Brennan, James S.

We have developed two neutron detector systems based on time-encoded imaging and demonstrated their applicability toward non-proliferation missions. The 1D-TEI system was designed for and evaluated against the ability to detect Special Nuclear Material (SNM) in very low signal to noise environments; in particular, very large stand-off and/or weak sources that may be shielded. We have demonstrated significant detection (>5 sigma) of a 2.8e5 n/s neutron fission source at 100 meters stand-off in 30 min. If scaled to an IAEA significant quantity of Pu, we estimate that this could be reduced to as few as ~5 minutes. In contrast to simple counting detectors, this was accomplished without the need of previous background measurements. The 2D-TEI system was designed for high resolution spatial mapping of distributions of SNM and proved feasibility of twodimensional fast neutron imaging using the time encoded modulation of rates on a single pixel detector. Because of the simplicity of the TEI design, there is much lower systematic uncertainty in the detector response typical coded apertures. Other imaging methods require either multiple interactions (e.g. neutron scatter camera or Compton imagers), leading to intrinsically low efficiencies, or spatial modulation of the signal (e.g., Neutron Coded Aperture Imager (Hausladen, 2012)), which requires a complicated, high channel count, and expensive position sensitive detector. In contrast, a single detector using a time-modulated collimator can encode directional information in the time distribution of detected events. This is the first investigation of time-encoded imaging for nuclear nonproliferation applications.

More Details

Remote Reactor Monitoring Annual Report

Marleau, Peter M.

The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors.

More Details

Results from laboratory tests of the two-dimensional Time-Encoded Imaging System

Marleau, Peter M.; Brennan, James S.; Brubaker, Erik B.; Gerling, Mark D.; Le Galloudec, Nathalie J.

A series of laboratory experiments were undertaken to demonstrate the feasibility of two dimensional time-encoded imaging. A prototype two-dimensional time encoded imaging system was designed and constructed. Results from imaging measurements of single and multiple point sources as well as extended source distributions are presented. Time encoded imaging has proven to be a simple method for achieving high resolution two-dimensional imaging with potential to be used in future arms control and treaty verification applications.

More Details

Multi-depth Measurement of Fast Neutrons

Marleau, Peter M.; Gerling, Mark D.; Sweany, Melinda; Cabrera-Palmer, Belkis C.; Brennan, James S.

A spallation based multiplicity detector has been constructed and deployed to the Kimballton Underground Research Facility to measure the cosmogenic fast neutron flux anti-coincident from the initiating muon. Two of the three planned measurements have been completed ( ,,, 380 and , -- , 600 m.w.e) with sufficient statistics. The third measurement at level 14 (-4450 m.w.e.) is currently being performed. Current results at - , 600 m.w.e. compare favourably to the one previous measurement at 550 m.w.e. For neutron energies between 100 and 200 MeV measurements at , -- , 380 m.w.e. produce fluxes between 1e -8 and 7e -9 n/cm 2 /s/MeV and at , - , 600 m.w.e. measurements produce fluxes between 7e -9 and 1e- 11 n/cm2 /s/MeV.

More Details

Results from field tests of the one-dimensional Time-Encoded Imaging System

Marleau, Peter M.; Brennan, James S.; Brubaker, Erik B.

A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.

More Details

Bubble masks for time-encoded imaging of fast neutrons

Brubaker, Erik B.; Brennan, James S.; Marleau, Peter M.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

More Details

Time Encoded Radiation Imaging

Marleau, Peter M.; Brubaker, Erik B.; Gerling, Mark D.; Schuster, Patricia F.; Steele, John T.

Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. Designing such a system is a daunting task. Using timemodulated collimators could be a transformative technique leading to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. A new technique using time encoding to make a compact, high efficiency imaging detector was conceived. Design considerations using Monte Carlo modeling and the construction and demonstration of a prototype imager are described.

More Details

Ground water and snow sensor based on directional detection of cosmogenic neutrons

Griffin, Patrick J.; Marleau, Peter M.

A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

More Details

Fast neutron resonance tomography using double scatter spectroscopy for materials identification

IEEE Nuclear Science Symposium Conference Record

Marleau, Peter M.; Brennan, James S.; Brubaker, Erik B.; Mengesha, Wondwosen M.; Mrowka, Stanley M.

Fast neutron based inspection systems are of interest in many Homeland Security applications because they offer the potential for elemental identification particularly for low Z elements which are the prime constituents of explosives. We are investigating a resonance tomography technique which may address some of the current problems found in fast neutron based inspection systems. A commercial off-the-shelf DT generator is used with an array of detectors to probe materials simultaneously over a large energy range and multiple viewing angles allowing for simultaneous 3-D imaging and materials identification. A prototype system has been constructed and we present here recent results for the identification of materials with differing H, C, N, O compositions. © 2011 IEEE.

More Details

Results with a 32-element dual mode imager

Mascarenhas, Nicholas M.; Cooper, Robert L.; Marleau, Peter M.; Mrowka, Stanley M.; Brennan, James S.

We present advances with a 32 element scalable, segmented dual mode imager. Scaling up the number of cells results in a 1.4 increase in efficiency over a system we deployed last year. Variable plane separation has been incorporated which further improves the efficiency of the detector. By using 20 cm diameter cells we demonstrate that we could increase sensitivity by a factor of 6. We further demonstrate gamma ray imaging in from Compton scattering. This feature allows for powerful dual mode imaging. Selected results are presented that demonstrate these new capabilities.

More Details

Applying the neutron scatter camera to treaty verification and warhead monitoring

Mascarenhas, Nicholas M.; Cooper, Robert L.; Mrowka, Stanley M.; Brennan, James S.; Marleau, Peter M.

The neutron scatter camera was originally developed for a range of SNM detection applications. We are now exploring the feasibility of applications in treaty verification and warhead monitoring using experimentation, maximum likelihood estimation method (MLEM), detector optimization, and MCNP-PoliMi simulations.

More Details
Results 1–200 of 214
Results 1–200 of 214