Publications

Results 26–34 of 34
Skip to search filters

Challenges of designing and processing extreme low-G Micro Electrical-Mechanical System (MEMS) accelerometers

Proceedings of SPIE - The International Society for Optical Engineering

Swiler, Thomas P.; Krishnamoorthy, Uma K.; Clews, Peggy J.; Baker, Michael S.; Tanner, Danelle M.

There is an increasing demand to build highly sensitive, low-G, microscale acceleration sensors with the ability to sense accelerations in the nano-G (10-8 m/s2) regime. To achieve such sensitivities, these sensors require compliant mechanical springs attached to large masses. The high sensitivities and the difficulty in integrating robust mechanical stops into these designs make these parts inherently weak, lacking the robustness to survive even the low level accelerations encountered in standard handling, from release processing, where supporting interlayers present during fabrication are etched away, through packaging. Thus, the process of transforming a MEMS-based acceleration sensor from an unreleased state to a protected functional state poses significant challenges. We summarize prior experiences with packaging such devices and report on recent work in packaging and protecting a highly sensitive acceleration sensor that optically senses displacement through the use of sub-wavelength nanogratings. We find that successful implementation of such sensors requires starting with a clean and robust MEMS design, performing careful and controlled release processing, and designing and executing a robust handling and packaging solution that keeps a fragile MEMS device protected at all times.

More Details

The influence of coating structure on micromachine stiction

Tribology Letters

Kushmerick, J.G.; Hankins, M.G.; De Boer, Maarten P.; Clews, Peggy J.; Carpick, R.W.; Bunker, B.C.

Stiction and friction in micromachines is commonly inhibited through the use of silane coupling agents such as 1H-, 1H-, 2H-, 2H-perfluorodecyltrichlorosilane (FDTS). FDTS coatings have allowed micromachine parts processed in water to be released without debilitating capillary adhesion occurring. These coatings are frequently considered as densely-packed monolayers, well-bonded to the substrate. In this paper, it is demonstrated that FDTS coatings can exhibit complex nanoscale structures, which control whether micromachine parts release or not. Surface images obtained via atomic force microscopy reveal that FDTS coating solutions can generate micellar aggregates that deposit on substrate surfaces. Interferometric imaging of model beam structures shows that stiction is high when the droplets are present and low when only monolayers are deposited. As the aggregate thickness (tens of nanometers) is insufficient to bridge the 2 μm gap under the beams, the aggregates appear to promote beam-substrate adhesion by changing the wetting characteristics of coated surfaces. Contact angle measurements and condensation figure experiments have been performed on surfaces and under coated beams to quantify the changes in interfacial properties that accompany different coating structures. These results may explain the irreproducibility that is often observed with these films.

More Details

Chemical Vapor Deposition of Fluoroalkylsilane Monolayer Films for Adhesion Control in Microelectromechanical Systems

Journal of Vacuum Science Technology B

Mayer, T.M.; De Boer, Maarten P.; Shinn, Neal D.; Clews, Peggy J.; Michalske, Terry A.

We have developed a new process for applying a hydrophobic, low adhesion energy coating to microelectromechanical (MEMS) devices. Monolayer films are synthesized from tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and water vapor in a low-pressure chemical vapor deposition process at room temperature. Film thickness is self-limiting by virtue of the inability of precursors to stick to the fluorocarbon surface of the film once it has formed. We have measured film densities of {approx}3 molecules nm{sup 2} and film thickness of {approx}1 nm. Films are hydrophobic, with a water contact angle >110{sup o}. We have also incorporated an in-situ downstream microwave plasma cleaning process, which provides a clean, reproducible oxide surface prior to film deposition. Adhesion tests on coated and uncoated MEMS test structures demonstrate superior performance of the FOTS coatings. Cleaned, uncoated cantilever beam structures exhibit high adhesion energies in a high humidity environment. An adhesion energy of 100 mJ m{sup -2} is observed after exposure to >90% relative humidity. Fluoroalkylsilane coated beams exhibit negligible adhesion at low humidity and {<=} 20 {micro}J m{sup -2} adhesion energy at >90% relative humidity. No obvious film degradation was observed for films exposed to >90% relative humidity at room temperature for >24 hr.

More Details
Results 26–34 of 34
Results 26–34 of 34