Publications

Results 51–100 of 212
Skip to search filters

Formulation and computation of dynamic, interface-compatible Whitney complexes in three dimensions

Journal of Computational Physics

Kramer, Richard M.; Siefert, Christopher S.; Voth, Thomas E.; Bochev, Pavel B.

A discrete De Rham complex enables compatible, structure-preserving discretizations for a broad range of partial differential equations problems. Such discretizations can correctly reproduce the physics of interface problems, provided the grid conforms to the interface. However, large deformations, complex geometries, and evolving interfaces makes generation of such grids difficult. We develop and demonstrate two formally equivalent approaches that, for a given background mesh, dynamically construct an interface-conforming discrete De Rham complex. Both approaches start by dividing cut elements into interface-conforming subelements but differ in how they build the finite element basis on these subelements. The first approach discards the existing non-conforming basis of the parent element and replaces it by a dynamic set of degrees of freedom of the same kind. The second approach defines the interface-conforming degrees of freedom on the subelements as superpositions of the basis functions of the parent element. These approaches generalize the Conformal Decomposition Finite Element Method (CDFEM) and the extended finite element method with algebraic constraints (XFEM-AC), respectively, across the De Rham complex.

More Details

A virtual control coupling approach for problems with non-coincident discrete interfaces

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Bochev, Pavel B.; Kuberry, Paul A.; Peterson, Kara J.

Independent meshing of subdomains separated by an interface can lead to spatially non-coincident discrete interfaces. We present an optimization-based coupling method for such problems, which does not require a common mesh refinement of the interface, has optimal H1 convergence rates, and passes a patch test. The method minimizes the mismatch of the state and normal stress extensions on discrete interfaces subject to the subdomain equations, while interface “fluxes” provide virtual Neumann controls.

More Details

Towards a scalable multifidelity simulation approach for electrokinetic problems at the mesoscale

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hong, Brian D.; Perego, Mauro P.; Bochev, Pavel B.; Frischknecht, Amalie F.; Phillips, Edward G.

In this work we present a computational capability featuring a hierarchy of models with different fidelities for the solution of electrokinetics problems at the micro-/nano-scale. A multifidelity approach allows the selection of the most appropriate model, in terms of accuracy and computational cost, for the particular application at hand. We demonstrate the proposed multifidelity approach by studying the mobility of a colloid in a micro-channel as a function of the colloid charge and of the size of the ions dissolved in the fluid.

More Details

A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

Journal of Computational Physics

Cheung, James C.; Frischknecht, Amalie F.; Perego, Mauro P.; Bochev, Pavel B.

We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.

More Details

A high-order staggered meshless method for elliptic problems

SIAM Journal on Scientific Computing

Trask, Nathaniel; Perego, Mauro P.; Bochev, Pavel B.

We present a new meshless method for scalar diffusion equations, which is motivated by their compatible discretizations on primal-dual grids. Unlike the latter though, our approach is truly meshless because it only requires the graph of nearby neighbor connectivity of the discretization points xi. This graph defines a local primal-dual grid complex with a virtual dual grid, in the sense that specification of the dual metric attributes is implicit in the method's construction. Our method combines a topological gradient operator on the local primal grid with a generalized moving least squares approximation of the divergence on the local dual grid. We show that the resulting approximation of the div-grad operator maintains polynomial reproduction to arbitrary orders and yields a meshless method, which attains O(hm) convergence in both L2- and H1-norms, similar to mixed finite element methods. We demonstrate this convergence on curvilinear domains using manufactured solutions in two and three dimensions. Application of the new method to problems with discontinuous coefficients reveals solutions that are qualitatively similar to those of compatible mesh-based discretizations.

More Details

A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

Computers and Mathematics with Applications (Oxford)

D'Elia, Marta D.; Perego, Mauro P.; Bochev, Pavel B.; Littlewood, David J.

We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result, the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

More Details

A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition

Computers and Mathematics with Applications

Gerritsma, Marc; Bochev, Pavel B.

Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity-vorticity-pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximated by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. We also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.

More Details

Optimization-based additive decomposition of weakly coercive problems with applications

Computers and Mathematics with Applications

Bochev, Pavel B.; Ridzal, Denis R.

We present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem, our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.

More Details

A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

Computers and Mathematics with Applications

D'Elia, Marta D.; Perego, Mauro P.; Bochev, Pavel B.; Littlewood, David J.

We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia's agile software components toolkit. The latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

More Details

Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

ESAIM: Mathematical Modelling and Numerical Analysis

Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; Luskin, Mitchell

We formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

More Details
Results 51–100 of 212
Results 51–100 of 212