Publications

Results 26–50 of 171
Skip to search filters

Understanding the reliability of solder joints used in advanced structural and electronics applications: Part 1 - Filler metal properties and the soldering process

Welding Journal

Vianco, Paul T.

Soldering technology has made tremendous strides in the past half-century. Whether structural or electronic, all solder joints must provide a level of reliability that is required by the application. This Part 1 report examines the effects of filler metal properties and soldering process on joint reliability. Solder alloy composition must have the appropriate melting and mechanical properties that suit the product's assembly process(es) and use environment. The filler metal must also optimize solderability (wetting-and-spreading) to realize the proper joint geometry. Here, the soldering process also affects joint reliability. The choice of flux and thermal profile support the solderability performance of the molten filler metal to successfully fill the gap and complete the fillet.

More Details

LTCC thick film process characterization

IMAPS/ACerS 12th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2016

Girardi, M.A.; Peterson, K.A.; Vianco, Paul T.

Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. The LTCC thick film process is summarized including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels, 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.

More Details

Validation of the Dynamic Recrystallization (DRX) Mechanism for Whisker and Hillock Growth on Sn Thin Films

Journal of Electronic Materials

Vianco, Paul T.; Neilsen, Michael K.; Rejent, Jerome A.; Grant, Richard P.

A study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. The cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: εc = A Do mZn, (2) DRX to be cyclic: Do < 2Dr, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0-μm and 4.9-μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. A first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.

More Details

UCPD model for Pb-free solder

Journal of Electronic Packaging, Transactions of the ASME

Neilsen, Michael K.; Vianco, Paul T.

A unified creep plasticity damage (UCPD) model for eutectic Sn-Pb and Pb-free solders was developed and implemented into finite element analysis codes. The new model will be described along with the relationship between the model's damage evolution equation and an empirical Coffin-Manson relationship for solder fatigue. Next, developments needed to model crack initiation and growth in solder joints will be described. Finally, experimentally observed cracks in typical solder joints subjected to thermal mechanical fatigue are compared with model predictions. Finite element based modeling is particularly suited for predicting solder joint fatigue of advanced electronics packaging, e.g. package-on-package (PoP), because it allows for evaluation of a variety of package materials and geometries.

More Details
Results 26–50 of 171
Results 26–50 of 171