Publications

Results 51–74 of 74
Skip to search filters

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Hahn, K.D.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Harding, Eric H.; Jennings, C.A.; Awe, T.J.; Geissel, Matthias G.; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Lamppa, Derek C.; Martin, M.R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, D.G.; Stygar, William A.; Vesey, Roger A.

The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100-ns Z machine, the 2.5-kJ, 1 TW Z Beamlet laser, and the 10-T Applied B-field on Z system. Despite an estimated implosion velocity of only 70-km/s in these experiments, electron and ion temperatures at stagnation were as high as 3-keV, and thermonuclear deuterium-deuterium neutron yields up to 2-×-1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8-mm) and lasted approximately 2-ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4-g/cm3. In these experiments, up to 5-×-1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2-mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1-keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.H.; Hess, Mark H.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Experimental verification of the Magnetized Liner Inertial Fusion (MagLIF) concept

ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Awe, T.J.; Chandler, Gordon A.; Cuneo, M.E.; Geissel, Matthias G.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Jennings, C.A.; Knapp, P.F.; Lamppa, Derek C.; Martin, M.R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, J.L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Schmit, Paul S.; Sinars, Daniel S.; Smith, Ian C.

Abstract not provided.

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details

Neutron Diagnostics on the Z machine

Jones, Brent M.; Hahn, Kelly D.; Ruiz, Carlos L.; Chandler, Gordon A.; Fehl, David L.; Lash, Joel S.; Knapp, Patrick K.; McPherson, Leroy A.; Nelson, Alan J.; Rochau, G.A.; Schmit, Paul S.; Sefkow, Adam B.; Sinars, Daniel S.; Torres, Jose A.; Cooper, Gary W.; Bonura, Michael A.; Long, Joel L.; Styron, Jedediah D.; Davis, Brent D.; Buckles, Rob B.; Moy, Ken M.; Miller, Kirk M.; Mckenna, Ian M.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion experiments on the Z facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion Experiments on the Z Facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Modified 3D-helix-like instability structure for imploding Z-pinch liners that are premagnetized with a uniform axial field

Awe, Thomas J.; Jennings, Christopher A.; McBride, Ryan D.; Cuneo, M.E.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Sinars, Daniel S.; Slutz, Stephen A.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Herrmann, Mark H.; Jones, Michael J.; Knapp, Patrick K.; Mckenney, John M.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Schmit, Paul S.; Sefkow, Adam B.; Stygar, William A.; Vesey, Roger A.; Yu, Edmund Y.; Tomlinson, Kurt T.; Schroen, Diana G.

Abstract not provided.

Results Progress and Plans for Magnetized Liner Inertial Fusion (MagLIF) on Z

Peterson, Kyle J.; Slutz, Stephen A.; Sinars, Daniel S.; Sefkow, Adam B.; Gomez, Matthew R.; Awe, Thomas J.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Schmit, Paul S.; Smith, Ian C.; McBride, Ryan D.; Rovang, Dean C.; Knapp, Patrick K.; Hansen, Stephanie B.; Jennings, Christopher A.; Harding, Eric H.; Porter, John L.; Vesey, Roger A.; Blue, Brent B.; Schroen, Diana G.; Tomlinson, Kurt T.

Abstract not provided.

Results 51–74 of 74
Results 51–74 of 74