Plasmonic Response in Three-Dimensional Meta-Films
Abstract not provided.
Abstract not provided.
2020 14th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2020
A wall-first variant of membrane projection lithography (MPL) is introduced which yields three-dimensional meta-films; mm-scale structures with micron-scale periodicity and 3D nm-scale unit cell structure. These meta-films combine aspects of photonic crystals, metamaterials and plasmonic nano antennas in their infrared scattering behavior. We present the fabrication approach, and modeling/IR characterization results.
Optics Express
A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.
Materials Science in Semiconductor Processing
State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. We have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be applied to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.
Abstract not provided.
Abstract not provided.
Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics
The manufacturing tolerances of a stencil-lithography variant, membrane projection lithography, were investigated. In the first part of this work, electron beam lithography was used to create stencils with a range of linewidths. These patterns were transferred into the stencil membrane and used to pattern metallic lines on vertical silicon faces. Only the largest lines, with a nominal width of 84 nm, were resolved, resulting in 45 ± 10 nm (average ± standard deviation) as deposited with 135-nm spacing. Although written in the e-beam write software file as 84-nm in width, the lines exhibited linewidth bias. This can largely be attributed to nonvertical sidewalls inherent to dry etching techniques that cause proportionally larger impact with decreasing feature size. The line edge roughness can be significantly attributed to the grain structure of the aluminum nitride stencil membrane. In the second part of this work, the spatial uniformity of optically defined (as opposed to e-beam written) metamaterial structures over large areas was assessed. A Fourier transform infrared spectrometer microscope was used to collect the reflection spectra of samples with optically defined vertical split ring from 25 spatially resolved 300 × 300 μm regions in a 1-cm2 area. The technique is shown to provide a qualitative measure of the uniformity of the inclusions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.
Abstract not provided.
After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.
IEEE Journal of Photovoltaics
Microsystems-enabled photovoltaics (MEPV) has great potential to meet the increasing demands for light-weight, photovoltaic solutions with high power density and efficiency. This paper describes effective failure analysis techniques to localize and characterize nonfunctional or underperforming MEPV cells. The defect localization methods such as electroluminescence under forward and reverse bias, as well as optical beam induced current using wavelengths above and below the device band gap, are presented. The current results also show that the MEPV has good resilience against degradation caused by reverse bias stresses. © 2013 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ECS Transactions
Microsystem technologies have the potential to significantly improve the performance, reduce the cost, and extend the capabilities of solar power systems. These benefits are possible due to a number of significant beneficial scaling effects within solar cells, modules, and systems that are manifested as the size of solar cells decrease to the sub-millimeter range. To exploit these benefits, we are using advanced fabrication techniques to create solar cells from a variety of compound semiconductors and silicon that have lateral dimensions of 250 - 1000 μm and are 1 - 20 μm thick. These fabrication techniques come out of relatively mature microsystem technologies such as integrated circuits (IC) and microelectromechanical systems (MEMS) which provide added supply chain and scale-up benefits compared to even incumbent PV technologies. © The Electrochemical Society.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
We present the experimental procedure to create lattice mismatched multijunction photovoltaic (PV) cells using 3D integration concepts. Lattice mismatched multijunction photovoltaic (PV) cells with decoupled electrical outputs could achieve higher efficiencies than current-matched monolithic devices. Growing lattice mismatched materials as a monolithic structure generates defects and decreases performance. We propose using methods from the integrated circuits and microsystems arena to produce the PV cell. The fabricated device consists of an ultrathin (6 μm) series connected InGaP/GaAs PV cell mechanically stacked on top of an electrically independent silicon cell. The InGaP/GaAs PV cell was processed to produce a small cell (750 μm) with back-contacts where all of the contacts sit at the same level. The dual junction and the silicon (c-Si) cell are electrically decoupled and the power from both cells is accessible through pads on the c-Si PV cell. Through this approach, we were able to fabricate a functional double junction PV cell mechanically attached to a c-Si PV cell with independent connections. © 2012 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.