Publications

Results 26–47 of 47
Skip to search filters

Z-inertial fusion energy: power plant final report FY 2006

Olson, Craig L.; McConnell, Paul E.; Rochau, Gary E.; Vigil, Virginia L.; Cipiti, Benjamin B.; Rodriguez, Salvador B.; Morrow, Charles W.; Farnum, Cathy O.; Durbin, S.G.; Aragon, Dannelle S.

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

More Details

Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report

Siegel, Malcolm D.; McConnell, Paul E.; Everett, Randy L.

The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

More Details

Development and evaluation of innovative arsenic adsorption technologies for drinking water by the arsenic water technology partnership

Siegel, Malcolm D.; McConnell, Paul E.

Recent reduction of drinking water Maximum Concentration Level (MCL) for arsenic from 50 ppb to 10 ppb was intended to reduce incidence of bladder cancer and other cancers in US. Southwestern United States is characterized by high and variable background levels for arsenic. Estimated national annual costs of implementing 10 ppb MCL range from $165M to $605M to save 7 - 33 lives. - $5M - $23.9M /life saved - $1.3M - $6.6M/ year of life saved. About 1 life/500,000 exposed persons per year. New MCL is controversial due to high costs and uncertain health benefits.

More Details

Chemical Compatibility Testing Final Report Including Test Plans and Procedures

Nigrey, Paul J.; McConnell, Paul E.; McConnell, Paul E.

This report provides an independent assessment of information on mixed waste streams, chemical compatibility information on polymers, and standard test methods for polymer properties. It includes a technology review of mixed low-level waste (LLW) streams and material compatibilities, validation for the plan to test the compatibility of simulated mixed wastes with potential seal and liner materials, and the test plan itself. Potential packaging materials were reviewed and evaluated for compatibility with expected hazardous wastes. The chemical and physical property measurements required for testing container materials were determined. Test methodologies for evaluating compatibility were collected and reviewed for applicability. A test plan to meet US Department of Energy and Environmental Protection Agency requirements was developed. The expected wastes were compared with the chemical resistances of polymers, the top-ranking polymers were selected for testing, and the most applicable test methods for candidate seal and liner materials were determined. Five recommended solutions to simulate mixed LLW streams are described. The test plan includes descriptions of test materials, test procedures, data collection protocols, safety and environmental considerations, and quality assurance procedures. The recommended order of testing to be conducted is specified.

More Details

Estimation of Shielding Thickness for a Prototype Department of Energy National Spent Nuclear Fuel Program Transport Cask

Sanchez, Lawrence C.; McConnell, Paul E.

Preliminary shielding calculations were performed for a prototype National Spent Nuclear Fuel Program (NSNFP) transport cask. This analysis is intended for use in the selection of cask shield material type and preliminary estimate of shielding thickness. The radiation source term was modeled as cobalt-60 with radiation exposure strength of 100,000 R/hr. Cobalt-60 was chosen as a surrogate source because it simultaneous emits two high-energy gammas, 1.17 MeV and 1.33 MeV. This gamma spectrum is considered to be large enough that it will upper bound the spectra of all the various spent nuclear fuels types currently expected to be shipped within the prototype cask. Point-kernel shielding calculations were performed for a wide range of shielding thickness of lead and depleted uranium material. The computational results were compared to three shielding limits: 200 mrem/hr dose rate limit at the cask surface, 50 mR/hr exposure rate limit at one meter from the cask surface, and 10 mrem/hr limit dose rate at two meters from the cask surface. The results obtained in this study indicated that a shielding thickness of 13 cm is required for depleted uranium and 21 cm for lead in order to satisfy all three shielding requirements without taking credit for stainless steel liners. The system analysis also indicated that required shielding thicknesses are strongly dependent upon the gamma energy spectrum from the radiation source term. This later finding means that shielding material thickness, and hence cask weight, can be significantly reduced if the radiation source term can be shown to have a softer, lower energy, gamma energy spectrum than that due to cobalt-60.

More Details
Results 26–47 of 47
Results 26–47 of 47