Understanding the Run-out Behavior of a Ag-Cu-Zr Braze Alloy When Used to Join Alumina to an Fe-Ni-Co Alloy
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Crystal Growth
InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z∼0.38) IL is ∼1-2 nm thick, and is grown after and at the same growth temperature as the ∼3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ∼10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to ∼0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing nonradiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.
Journal of Materials Science
This paper describes the role of He ion implantation on the friction, wear, electrical contact resistance (ECR), and near surface microstructure of Au films. The films were deposited by e-beam evaporation and implanted with He under two different conditions. Electrical contact resistance and friction data were collected simultaneously, while sliding a Au-Cu alloy pin on He ion implanted Au films. Results showed that friction coefficients were reduced from ~1.5 to ~0.5 and specific wear rates from ~4 × 10−3 to ~1 ×10−4 mm3/N m (both versus un-implanted samples) without a significant change in sliding ECR (~16 mΩ) as a result of He ion beam implantation. Subsurface microstructural changes due to tribological stress and the passing of current were analyzed using site-specific cross-sectional TEM. The implantation of He by itself did not induce changes to the grain size or crystallographic texture of e-beam Au. However, frictional contact during ECR testing of low energy He implanted films resulted in the formation of stable equiaxed nanocrystalline grains and the growth and redistribution of cavities beneath the wear surface. Plastic deformation as evidenced by transfer of Au to the pin during frictional contact was significantly reduced as a result of implantation. This was hypothesized to be a result of Orowan-like hardening due to He implantation.
Abstract not provided.
Abstract not provided.
Journal of Materials Science
Abstract not provided.
This work has started the process of extending nanometer-scale comprehensive microanalysis to the 3rd dimension by combining full x-ray spectral imaging with previously developed computed tomography techniques whereby we acquire a series of spectral images for a large number of projections of the same specimen in the transmission electron microscope and then analyze the composite computed tomographic spectral image data prior to application of existing tomographic reconstruction software. We have demonstrated a needle-shaped specimen geometry (shape/size and preparation method) by focused ion beam preparation and acquisition and analysis of a complete tomographic spectral image on a test material consisting of fine-grained Ni with sub-10 nm alumina particles.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Microscopy and Microanalysis
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the American Ceramic Society
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Science
One-dimensional (1D) nanostructures, often referred to as nanowires, have attracted considerable attention due to their unique mechanical, chemical, and electrical properties. Although numerous novel technological applications are being proposed for these structures, many of the processes used to synthesize these materials involve a vapor phase and require high temperatures and long growth times. Potentially faster methods requiring templates, such as anodized aluminum oxide, involve multiple fabrication steps, which would add significantly to the cost of the final material and may preclude their widespread use. In the present study, it is shown that template-free electrodeposition from an alkaline solution can produce arrays of Sn nanoneedles directly onto Cu foil substrates. This electrodeposition process occurs at 55 C; it is proposed that the nanoneedles grow via a catalyst-mediated mechanism. In such a process, the growth is controlled at the substrate/nanostructure interface rather than resulting from random plating-induced defects such as dendrites or aging defects such as tin whiskers. There are multiple potential applications for 1D Sn nanostructures - these include anodes in lithium-ion and magnesium-ion batteries and as thermal interface materials. To test this potential, type 2032 lithium-ion battery button cells were fabricated using the electrodeposited Sn. These cells showed initial capacities as high as 850 mAh/g and cycling stability for over 200 cycles. © 2013 Springer Science+Business Media New York.
MRS Bulletin
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A method for measuring the relative performance of energy dispersive spectrometers (EDS) on a TEM is discussed. A NiO thin-film standard fabricated at Sandia CA is used. A performance parameter,, is measured and compared to values on several TEM systems.
Materials Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Metallurgical and Materials Transactions A
Abstract not provided.
Surface and Coatings Technology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.