Publications

Results 1–200 of 318
Skip to search filters

In-situ, nanoscale fracture toughness measurements for improved mechanical interfaces

DelRio, Frank W.; Grutzik, Scott J.; Mook, William M.; Dickens, Sara D.; Kotula, Paul G.; Hintsala, Eric H.; Stauffer, Douglas S.; Boyce, Brad B.

In this project, we demonstrated stable nanoscale fracture in single-crystal silicon using an in-situ wedge-loaded double cantilever beam (DCB) specimen. The fracture toughness KIC was calculated directly from instrumented measurement of force and displacement via finite element analysis with frictional corrections. Measurements on multiple test specimens were used to show KIC = 0.72 ± 0.07 MPa m1/2 on {111} planes and observe the crack-growth resistance curve in <500 nm increments. The exquisite stability of crack growth, instrumented measurement of material response, and direct visual access to observe nanoscale fracture processes in an ideally brittle material differentiate this approach from prior DCB methods.

More Details

The growth and nanothermite reaction of 2Al/3NiO multilayer thin films

Journal of Applied Physics

Abere, Michael J.; Beason, Matthew T.; Reeves, Robert V.; Rodriguez, Mark A.; Kotula, Paul G.; Sobczak, Catherine E.; Son, Steven F.; Yarrington, Cole D.; Adams, David P.

Nanothermite NiO–Al is a promising material system for low gas emission heat sources; yet, its reactive properties are highly dependent on material processing conditions. In the current study, sputter deposition is used to fabricate highly controlled nanolaminates comprised of alternating NiO and Al layers. Films having an overall stoichiometry of 2Al to 3NiO were produced with different bilayer thicknesses to investigate how ignition and self-sustained, high temperature reactions vary with changes to nanometer-scale periodicity and preheat conditions. Ignition studies were carried out with both hot plate and laser irradiation and compared to slow heating studies in hot-stage x-ray diffraction. Ignition behavior has bilayer thickness and heating rate dependencies. The 2Al/3NiO with λ ≤ 300 nm ignited via solid/solid diffusion mixing (activation energy, E a  = 49 ± 3 kJ/mole). Multilayers having λ ≥ 500 nm required a more favorable mixing kinetics of solid/liquid dissolution into molten Al ( E a  = 30 ± 4 kJ/mole). This solid/liquid dissolution E a is a factor of 5 lower than that of the previously reported powder compacts due to the elimination of a passivating Al oxide layer present on the powder. The reactant mixing mechanism between 300 and 500 nm bilayer thicknesses was dependent on the ignition source's heating rate. The self-propagating reaction velocities of 2Al/3NiO multilayers varied from 0.4 to 2.5 m/s. Pre-heating nanolaminates to temperatures below the onset reaction temperatures associated with forming intermediate nickel aluminides at multilayer interfaces led to increased propagation velocities, whereas pre-heating samples above the onset temperatures inhibited subsequent attempts at laser ignition.

More Details

Formation of Al3Sc in Al0.8Sc0.2 thin films

Vacuum

Esteves, Giovanni E.; Bischoff, Joseph; Schmidt, Ethan W.; Rodriguez, Mark A.; Rosenberg, Samantha G.; Kotula, Paul G.

The formation of Al3Sc, in 100 nm Al0.8Sc0.2 films, is found to be driven by exposure to high temperature through higher deposition temperature or annealing. High film resistivity was observed in films with lower deposition temperature that exhibited a lack of crystallinity, which is anticipated to cause more electron scattering. An increase in deposition temperature allows for the nucleation and growth of crystalline Al3Sc regions that were verified by electron diffraction. The increase in crystallinity reduces electron scattering, which results in lower film resistivity. Annealing Al0.8Sc0.2 films at 600 °C in an Ar vacuum environment also allows for the formation and recrystallization of Al3Sc and Al and yields saturated resistivity values between 9.58 and 10.5 μΩ-cm regardless of sputter conditions. Al3Sc was found to nucleate and grow in a random orientation when deposited on SiO2, and highly {111} textured when deposited on 100 nm Ti and AlN films that were used as template layers. The rocking curve of the Al3Sc 111 reflection for the as-deposited films on Ti and AlN at 450 °C was 1.79° and 1.68°, respectively. Annealing the film deposited on the AlN template reduced the rocking curve substantially to 1.01° due to recrystallization of Al3Sc and Al within the film.

More Details

Compositional Effects of Additively Manufactured Refractory High‐Entropy Alloys under High‐Energy Helium Irradiation

Nanomaterials

Lang, Eric J.; Burns, Kory; Wang, Yongqiang; Kotula, Paul G.; Kustas, Andrew K.; Rodriguez, Sal; Aitkaliyeva, Assel; Hattar, Khalid M.

High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.

More Details

The effect of metal–insulator interface interactions on electrical transport in granular metals

Journal of Physics. Condensed Matter

Gilbert, Simeon J.; Rosenberg, Samantha G.; Kotula, Paul G.; Kmieciak, Thomas G.; Biedermann, Laura B.; Siegal, Michael P.

Here, we present an in-depth study of metal–insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2–0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7–2.6 nm average diameters and percolation thresholds between φ = 0.4–0.5. The room temperature conductivities for the φ = 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal–insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal–insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.

More Details

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor K.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette S.; Casilas, M.C.; Kolesnichenko, Igor K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Zheng, L.Z.; Borglin, S.B.; Lammers, L.L.; Whittaker, M.W.; Zarzycki, P.Z.; Fox, P.F.; Chang, C.C.; Subramanian, N.S.; Nico, P.N.; Tournassat, C.T.; Chou, C.C.; Xu, H.X.; Singer, E.S.; Steefel, C.I.; Peruzzo, L.P.; Wu, Y.W.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

Variable Laser Ignition Pathways in Al/Pt Reactive Multilayers across 10 Decades of Pulse Duration

Journal of Physical Chemistry C

Abere, Michael J.; Yarrington, Cole D.; Kotula, Paul G.; McDonald, Joel P.; Adams, David P.

Pulsed laser irradiation is used to investigate the local initiation of rapid, self-propagating formation reactions in Al/Pt multilayers. The single pulse direct laser ignition of these 1.6 μm thick freestanding foils was characterized over 10 decades of pulse duration (10 ms to 150 fs). Finite element, reactive heat transport modeling of the near-threshold conditions has identified three distinct ignition pathways. For milli- to microsecond pulses, ignition occurs following sufficient absorption of laser energy to enable diffusion of Al and Pt between layers such that the heat released from the corresponding exothermic reaction overcomes conductive losses outside the laser-irradiated zone. When pulse duration is decreased into the nanosecond regime, heat is concentrated near the surface such that the Al locally melts, and a portion of the top-most bilayers react initially. The favorable kinetics and additional heat enable ignition. Further reducing pulse duration to hundreds of femtoseconds leads to a third ignition pathway. While much of the energy from these pulses is lost to ablation, the remaining heat beneath the crater can be sufficiently concentrated to drive a transverse self-propagating reaction, wherein the heat released from mixing at each interface occurs under kinetic conditions capable of igniting the subsequent layer.

More Details

TEM Studies of Segregation in a Ge–Sb–Te Alloy During Heating

Springer Proceedings in Materials

Singh, Manish K.; Ghosh, Chanchal; Tripathi, Shalini; Kotula, Paul G.; Bakan, Gokhan; Silva, Helena; Carter, C.B.

Phase-change materials are important for optical and electronic computing memory. Ge–Sb–Te (GST) is one of the important phase-change materials and has been studied extensively for fast, reversible, and non-volatile electronic phase-change memory. GST exhibits structural transformations from amorphous to metastable fcc at ~150 ℃ and fcc to hcp at ~300 ℃. The investigation of the structural, microstructural, and microchemical changes with high-temporal resolution during heating is crucial to gain insights on the changes that materials undergo during phase transformations. The as-deposited GST film has amorphous island morphology which transform to the metastable fcc phase at ~130 ℃. The second-phase transformation, from fcc to hexagonal, is observed at ~170 ℃. While the as-deposited amorphous islands show a homogeneous distribution of Ge, Sb and Te, these islands boundaries become Ge-rich after heating. Morphological and structural evolutions were captured during heating inside an aberration corrected environmental TEM equipped with a high-speed camera under a low-dose conditions to minimize beam-induced changes in the samples. Microchemical studies were carried out employing ChemiSTEM technique in probe-corrected mode with a monochromated beam.

More Details

Characterization of Amplification Properties of the Superconducting-Ferromagnetic Transistor

IEEE Transactions on Applied Superconductivity

Nevirkovets, Ivan P.; Kojima, Takafumi; Uzawa, Yoshinori; Kotula, Paul G.; Missert, Nancy A.; Mukhanov, Oleg A.

We report on the measurement results of the superconducting-ferromagnetic transistors (SFTs). The devices were made at Northwestern University and Hypres (SeeQC), Inc. (Nevirkovets et al., 2014; 2015). SFT is a multiterminal device with the SISFIFS (or SFIFSIS) structure (where S, I, and F denote a superconductor, an insulator, and a ferromagnetic material, respectively) exploiting intense quasiparticle injection in order to modify the nonlinear I-V curve of a superconducting tunnel junction. SFT is capable of providing voltage, current, and power amplification while having good input/output isolation. We characterized the devices using different measurement techniques. We measured S parameters of the single- and double-acceptor devices at frequencies up to 5 MHz. Importantly, we confirmed that the isolation between the input and output of the device is quite good. However, the techniques typically employed to characterize semiconductor devices do not allow for revealing the full potential of our low-resistive SFT devices, especially those having two acceptors. In the latter case, we also tested the devices using the battery-powered current sources with floating grounds. Analyzing double-acceptor I-V curves recorded at different levels of injection currents, for an optimal load, we deduced a small-signal voltage gain of 33 and a power gain of 2.4. We suggest that further improvement of the SFT device parameters is possible in optimized devices, so that the device potentially may serve as a preamplifier for readout of output signals of cryogenic detectors and be useful as an element of other superconductor-based circuits. In addition, we used scanning transmission electron microscopy to identify some problems in the fabrication of the devices without any planarization.

More Details

Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry

Journal of Materials Research

Katzenmeyer, Aaron M.; Luk, Ting S.; Bussmann, Ezra B.; Young, Steve M.; Anderson, Evan M.; Marshall, Michael T.; Ohlhausen, J.A.; Kotula, Paul G.; Lu, Ping L.; Campbell, DeAnna M.; Lu, Tzu-Ming L.; Liu, Peter Q.; Ward, Daniel R.; Misra, Shashank M.

Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.

More Details

Role of Oxygen on Chemical Segregation in Uncapped Ge2Sb2Te5 Thin Films on Silicon Nitride

ECS Journal of Solid State Science and Technology

Tripathi, Shilini T.; Kotula, Paul G.; Singh, Manish K.; Ghosh, Chanchal G.; Bakan, Gokhan B.; Silva, Helena S.; Carter, Clive B.

Germanium antimony telluride has been the most used and studied phase-change material for electronic memory due to its suitable crystallization temperature, amorphous to crystalline resistance contrast, and stability of the amorphous phase. In this paper, the segregation of Ge in a Ge2Sb2Te5 film of 30 nm thickness during heating inside the transmission electron microscope was observed and characterized. Furthermore, Ge2Sb2Te5 film was deposited using sputtering on a Protochips Fusion holder and left uncapped in atmosphere for about four months. Oxygen incorporated within the film played a significant role in the chemical segregation observed which resulted in amorphous Ge-O island boundaries and Sb and Te rich crystalline domains. Such composition changes can occur when the phase-change material interfaces insulating oxide layers in an integrated device and can significantly impact its electrical and thermal properties.

More Details

Complexion dictated thermal resistance with interface density in reactive metal multilayers

Physical Review B

Saltonstall, Christopher B.; McClure, Zachary D.; Abere, Michael J.; Guzman, David; Reeve, Samuel T.; Strachan, Alejandro; Kotula, Paul G.; Adams, David P.; Beechem, Thomas E.

Multilayers composed of aluminum (Al) and platinum (Pt) exhibit a nonmonotonic trend in thermal resistance with bilayer thickness as measured by time domain thermoreflectance. The thermal resistance initially increases with reduced bilayer thickness only to reach a maximum and then decrease with further shrinking of the multilayer period. These observations are attributed to the evolving impact of an intermixed amorphous complexion approximately 10 nm in thickness, which forms at each boundary between Al- and Pt-rich layers. Scanning transmission electron microscopy combined with energy dispersive x-ray spectroscopy find that the elemental composition of the complexion varies based on bilayer periodicity as does the fraction of the multilayer composed of this interlayer. These variations in complexion mitigate boundary scattering within the multilayers as shown by electronic transport calculations employing density-functional theory and nonequilibrium Green's functions on amorphous structures obtained via finite temperature molecular dynamics. The lessening of boundary scattering reduces the total resistance to thermal transport leading to the observed nonmonotonic trend thereby highlighting the central role of complexion on thermal transport within reactive metal multilayers.

More Details

Localized corrosion of low-carbon steel at the nanoscale

npj Materials Degradation

Hayden, Steven C.; Chisholm, Claire; Grudt, Rachael O.; Aguiar, Jeffery A.; Mook, William M.; Kotula, Paul G.; Pilyugina, Tatiana S.; Bufford, Daniel C.; Hattar, Khalid M.; Kucharski, Timothy J.; Taie, Ihsan M.; Ostraat, Michele L.; Jungjohann, Katherine L.

Mitigating corrosion remains a daunting challenge due to localized, nanoscale corrosion events that are poorly understood but are known to cause unpredictable variations in material longevity. Here, the most recent advances in liquid-cell transmission electron microscopy were employed to capture the advent of localized aqueous corrosion in carbon steel at the nanoscale and in real time. Localized corrosion initiated at a triple junction formed by a solitary cementite grain and two ferrite grains and then continued at the electrochemically-active boundary between these two phases. With this analysis, we identified facetted pitting at the phase boundary, uniform corrosion rates from the steel surface, and data that suggest that a re-initiating galvanic corrosion mechanism is possible in this environment. These observations represent an important step toward atomically defining nanoscale corrosion mechanisms, enabling the informed development of next-generation inhibition technologies and the improvement of corrosion predictive models.

More Details

Spin transport in an insulating ferrimagnetic-antiferromagnetic-ferrimagnetic trilayer as a function of temperature

AIP Advances

Chen, Yizhang; Cogulu, Egecan; Roy, Debangsu; Ding, Jinjun; Mohammadi, Jamileh B.; Kotula, Paul G.; Missert, Nancy A.; Wu, Mingzhong; Kent, Andrew D.

We present a study of the transport properties of thermally generated spin currents in an insulating ferrimagnetic-antiferromagnetic-ferrimagnetic trilayer over a wide range of temperature. Spin currents generated by the spin Seebeck effect (SSE) in a yttrium iron garnet (YIG) YIG/NiO/YIG trilayer on a gadolinium gallium garnet (GGG) substrate were detected using the inverse spin Hall effect (ISHE) in Pt. By studying samples with different NiO thicknesses, the spin diffusion length of NiO was determined to be ∼3.8 nm at room temperature. Surprisingly, a large increase of the SSE signal was observed below 30 K, and the field dependence of the signal closely follows a Brillouin function for an S=7/2 spin. The increase of the SSE signal at low temperatures could thus be associated with the paramagnetic SSE from the GGG substrate. Besides, a broad peak in the SSE response was observed around 100 K. These observations are important in understanding the generation and transport properties of spin currents through magnetic insulators and the role of a paramagnetic substrate in spin current generation.

More Details

Visualization of Kirkendall Voids at Cu-Au Interfaces by In Situ TEM Heating Studies

JOM

Kotula, Paul G.; Prasad, Somuri V.

Gold-plated copper alloys are used extensively in electrical contacts where diffusional processes are known to cause contact degradation. An in situ transmission electron microscopy (TEM) heating study was carried out to provide fundamental understanding of the aging phenomena in reasonable timescales. Samples to visualize the interface in TEM were prepared by focused ion beam (FIB) microscopy and heated in situ up to 350°C while holding at intermediate temperatures to enable imaging. The grain boundaries in Au coatings, specifically the columnar boundaries, provided rapid pathways for diffusion of Cu all the way to the Au surface. This unequal diffusion created vacancies in Cu which coalesced into Kirkendall voids. This in situ technique has been applied to visualize the diffusion pathways in electroplated and sputtered Au films deposited directly on Cu, as well the role of Ni and NiP as barrier layers for mitigating Cu diffusion.

More Details

Thickness dependence of Al0.88Sc0.12N thin films grown on silicon

Thin Solid Films

Knisely, Kathrine E.; Douglas, Erica A.; Mudrick, John M.; Rodriguez, Mark A.; Kotula, Paul G.

The thickening behavior of aluminum scandium nitride (Al0.88Sc0.12N) films grown on Si(111) substrates has been investigated experimentally using X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy, and residual stress measurement. Al0.88Sc0.12N films were grown with thicknesses spanning 14 nm to 1.1 um. TEM analysis shows that the argon sputter etch used to remove the native oxide prior to deposition produced an amorphous, oxygen-rich surface, preventing epitaxial growth. XRD analysis of the films show that the A1ScN(002) orientation improves as the films thicken and the XRD A1ScN(002) rocking curve full width half maximum decreases to 1.34 q for the 1.1 pm thick film. XRD analysis shows that the unit cell is expanded in both the a- and c-axes by Sc doping; the a-axis lattice parameter was measured to be 3.172 ± 0.007 A and the c-axis lattice parameter was measured to be 5.000 ± 0.001 A, representing 1.96% and 0.44% expansions over aluminum nitride lattice parameters, respectively. The grain size and roughness increase as the film thickness increases. A stress gradient forms through the film; the residual stress grows more tensile as the film thickens, from -1.24 GPa to +8.5MPa.

More Details

Spin-triplet supercurrent in Josephson junctions containing a synthetic antiferromagnet with perpendicular magnetic anisotropy

Physical Review B

Click, J.A.; Edwards, S.E.; Korucu, D.K.; Aguilar, V.A.; Niedzielski, B.M.; Loloee, R.L.; Pratt, W.P.; Birge, N.O.; Kotula, Paul G.; Missert, Nancy A.

In this paper, we present measurements of Josephson junctions containing three magnetic layers with noncollinear magnetizations. The junctions are of the form

S/F'/N/F/N/F"/S

, where

S

is superconducting Nb,

F'

is either a thin Ni or Permalloy layer with in-plane magnetization,

N

is the normal metal Cu,

F

is a synthetic antiferromagnet with magnetization perpendicular to the plane, composed of Pd/Co multilayers on either side of a thin Ru spacer, and

F"

is a thin Ni layer with in-plane magnetization. The supercurrent in these junctions decays more slowly as a function of the

F

-layer thickness than for similar spin-singlet junctions not containing the

F'

and

F"

layers. The slower decay is the prime signature that the supercurrent in the central part of these junctions is carried by spin-triplet pairs. Finally, the junctions containing

F'=

Permalloy are suitable for future experiments where either the amplitude of the critical current or the ground-state phase difference across the junction is controlled by changing the relative orientations of the magnetizations of the

F'

and

F"

layers.

More Details

Critical current oscillations of elliptical Josephson junctions with single-domain ferromagnetic layers

Journal of Applied Physics

Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.; Loloee, Reza; Pratt, W.P.; Birge, Norman O.; Gingrich, E.C.; Kotula, Paul G.; Missert, Nancy A.

Josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni81Fe19 or Ni65Fe15Co20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extract the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. We compare the data to previous work and to models of the 0-π transitions based on existing theories.

More Details

Planar Ohmic Contacts to Al 0.45 Ga 0.55 N/Al 0.3 Ga 0.7 N High Electron Mobility Transistors

ECS Journal of Solid State Science and Technology

Klein, Brianna A.; Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Sanchez, Carlos A.; Douglas, Erica A.; Crawford, Mary H.; Miller, Mary A.; Kotula, Paul G.; Fortune, Torben R.; Abate, Vincent M.

Here, we present a low resistance, straightforward planar ohmic contact for Al0.45Ga0.55N/Al0.3Ga0.7N high electron mobility transistors. Five metal stacks (a/Al/b/Au; a = Ti, Zr, V, Nb/Ti; b = Ni, Mo, V) were evaluated at three individual annealing temperatures (850, 900, and 950°C). The Ti/Al/Ni/Au achieved the lowest specific contact resistance at a 900°C anneal temperature. Transmission electron microscopy analysis revealed a metal-semiconductor interface of Ti-Al-Au for an ohmic (900°C anneal) and a Schottky (850°C anneal) Ti/Al/Ni/Au stack. HEMTs were fabricated using the optimized recipe with resulting contacts that had room-temperature specific contact resistances of ρc = 2.5 × 10-5 Ω cm², sheet resistances of RSH = 3.9 kΩ/$\blacksquare$, and maximum current densities of 75 mA/mm (at VGATE of 2 V). Electrical measurements from -50 to 200°C had decreasing specific contact resistance and increasing sheet resistance, with increasing temperature. These contacts enabled state-of-the-art performance of Al0.45Ga0.55N/Al0.3Ga0.7N HEMTs.

More Details

Analysis of multilayer devices for superconducting electronics by high-resolution scanning transmission electron microscopy and energy dispersive spectroscopy

IEEE Transactions on Applied Superconductivity

Missert, Nancy A.; Kotula, Paul G.; Rye, Michael J.; Rehm, Laura; Sluka, Volker; Kent, Andrew D.; Yohannes, Daniel; Kirichenko, Alex F.; Vernik, Igor V.; Mukhanov, Oleg A.; Bolkhovsky, Vladimir; Wynn, Alex; Johnson, Leonard; Gouker, Mark

A focused ion beam was used to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). Automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

More Details

Magnetically Recoverable Pd/Fe3O4 Core–Shell Nanowire Clusters with Increased Hydrogenation Activity

ChemPlusChem

Watt, John D.; Kotula, Paul G.; Huber, Dale L.

Core–shell nanostructures are promising candidates for the next generation of catalysts due to synergistic effects which can arise from having two active species in close contact, leading to increased activity. Likewise, catalysts displaying added functionality, such as a magnetic response, can have increased scientific and industrial potential. Here, Pd/Fe3O4 core–shell nanowire clusters are synthesized and applied as hydrogenation catalysts for an industrially important hydrogenation reaction: the conversion of acetophenone to 1-phenylethanol. During synthesis, the palladium nanowires self-assemble into clusters which act as a high-surface-area framework for the growth of a magnetic iron oxide shell. This material demonstrates excellent catalytic activity due to the presence of palladium while the strong magnetic properties provided by the iron oxide shell enable facile catalyst recovery.

More Details

High-Speed and Low-Energy Nitride Memristors

Advanced Functional Materials

Choi, Byung J.; Torrezan, Antonio C.; Strachan, John P.; Kotula, Paul G.; Lohn, A.J.; Marinella, Matthew J.; Li, Zhiyong; Williams, R.S.; Yang, J.J.

High-performance memristors based on AlN films have been demonstrated, which exhibit ultrafast ON/OFF switching times (≈85 ps for microdevices with waveguide) and relatively low switching current (≈15 μA for 50 nm devices). Physical characterizations are carried out to understand the device switching mechanism, and rationalize speed and energy performance. The formation of an Al-rich conduction channel through the AlN layer is revealed. The motion of positively charged nitrogen vacancies is likely responsible for the observed switching.

More Details

Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

Journal of Thermal Spray Technology

Sarobol, Pylin S.; Chandross, M.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel C.; Boyce, Brad B.; Hattar, Khalid M.; Kotula, Paul G.; Hall, Aaron C.

Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.

More Details

Elevated temperature tribology of cobalt and tantalum-based alloys

Wear

Scharf, Thomas W.; Prasad, Somuri V.; Kotula, Paul G.; Michael, Joseph R.; Robino, C.V.

This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430 °C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volume gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10−4 mm3/N m) were observed at 430 °C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430 °C. The results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.

More Details

On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

Journal of Applied Physics

Argibay, Nicolas A.; Mogonye, J.E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T.W.; Dugger, Michael T.; Prasad, Somuri V.

We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situ electrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea = 12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol. % ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. The proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

More Details

On the increased efficiency in InGaN-based multiple quantum wells emitting at 530-590 nm with AlGaN interlayers

Journal of Crystal Growth

Koleske, Daniel K.; Fischer, Arthur J.; Bryant, B.N.; Kotula, Paul G.; Wierer, J.J.

InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z∼0.38) IL is ∼1-2 nm thick, and is grown after and at the same growth temperature as the ∼3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ∼10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to ∼0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing nonradiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.

More Details

He implantation for improved tribological performance in Au electrical contacts

Journal of Materials Science

Mogonye, Jon-Erik M.; Hattar, K.; Kotula, Paul G.; Scharf, Thomas W.; Prasad, Somuri V.

This paper describes the role of He ion implantation on the friction, wear, electrical contact resistance (ECR), and near surface microstructure of Au films. The films were deposited by e-beam evaporation and implanted with He under two different conditions. Electrical contact resistance and friction data were collected simultaneously, while sliding a Au-Cu alloy pin on He ion implanted Au films. Results showed that friction coefficients were reduced from ~1.5 to ~0.5 and specific wear rates from ~4 × 10−3 to ~1 ×10−4 mm3/N m (both versus un-implanted samples) without a significant change in sliding ECR (~16 mΩ) as a result of He ion beam implantation. Subsurface microstructural changes due to tribological stress and the passing of current were analyzed using site-specific cross-sectional TEM. The implantation of He by itself did not induce changes to the grain size or crystallographic texture of e-beam Au. However, frictional contact during ECR testing of low energy He implanted films resulted in the formation of stable equiaxed nanocrystalline grains and the growth and redistribution of cavities beneath the wear surface. Plastic deformation as evidenced by transfer of Au to the pin during frictional contact was significantly reduced as a result of implantation. This was hypothesized to be a result of Orowan-like hardening due to He implantation.

More Details

Advanced Characterization: 3D chemistry and structure at sub-nm resolution

Kotula, Paul G.; Rye, Michael J.

This work has started the process of extending nanometer-scale comprehensive microanalysis to the 3rd dimension by combining full x-ray spectral imaging with previously developed computed tomography techniques whereby we acquire a series of spectral images for a large number of projections of the same specimen in the transmission electron microscope and then analyze the composite computed tomographic spectral image data prior to application of existing tomographic reconstruction software. We have demonstrated a needle-shaped specimen geometry (shape/size and preparation method) by focused ion beam preparation and acquisition and analysis of a complete tomographic spectral image on a test material consisting of fine-grained Ni with sub-10 nm alumina particles.

More Details

Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression

Sarobol, Pylin S.; Chandross, M.; Carroll, Jay D.; Mook, William M.; Boyce, Brad B.; Kotula, Paul G.; McKenzie, Bonnie B.; Bufford, Daniel C.; Hall, Aaron C.

The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.

More Details

Template-free electrochemical synthesis of tin nanostructures

Journal of Materials Science

Mackay, David T.; Janish, Matthew T.; Sahaym, Uttara; Kotula, Paul G.; Jungjohann, Katherine L.; Carter, C.B.; Norton, M.G.

One-dimensional (1D) nanostructures, often referred to as nanowires, have attracted considerable attention due to their unique mechanical, chemical, and electrical properties. Although numerous novel technological applications are being proposed for these structures, many of the processes used to synthesize these materials involve a vapor phase and require high temperatures and long growth times. Potentially faster methods requiring templates, such as anodized aluminum oxide, involve multiple fabrication steps, which would add significantly to the cost of the final material and may preclude their widespread use. In the present study, it is shown that template-free electrodeposition from an alkaline solution can produce arrays of Sn nanoneedles directly onto Cu foil substrates. This electrodeposition process occurs at 55 C; it is proposed that the nanoneedles grow via a catalyst-mediated mechanism. In such a process, the growth is controlled at the substrate/nanostructure interface rather than resulting from random plating-induced defects such as dendrites or aging defects such as tin whiskers. There are multiple potential applications for 1D Sn nanostructures - these include anodes in lithium-ion and magnesium-ion batteries and as thermal interface materials. To test this potential, type 2032 lithium-ion battery button cells were fabricated using the electrodeposited Sn. These cells showed initial capacities as high as 850 mAh/g and cycling stability for over 200 cycles. © 2013 Springer Science+Business Media New York.

More Details

Cubic erbium trihydride thin films

Thin Solid Films

Adams, D.P.; Rodriguez, Marko A.; Romero, Juan A.; Kotula, Paul G.; Banks, J.C.

High-purity, erbium hydride thin films have been deposited onto α-Al 2O 3 and oxidized Si by reactive sputtering methods. Rutherford backscattering spectrometry and elastic recoil detection show that films deposited at temperatures of 35, 150 and 275°C have a composition of 3H:1Er. Erbium trihydride films consist of a face-centered cubic erbium sub-lattice with a lattice parameter in the range of 5.11-5.20 Å. The formation of cubic ErH 3 is intriguing, because previous studies demonstrate a single trihydride phase with a hexagonal metal sub-lattice. The formation of a stable, cubic trihydride phase is attributed to a large, in-plane stress resulting from ion beam sputter deposition. © 2012 Elsevier B.V. All rights reserved.

More Details

Nanoindentation and TEM Characterization of Ion Irridiated 316L Stainless Steels

Energy Technology 2012: Carbon Dioxide Management and Other Technologies

Hattar, Khalid M.; Buchheit, Thomas E.; Kotula, Paul G.; Mcginnis, Alexander; Brewer, Luke

Understanding the effects of extensive radiation damage in structural metals provides necessary insight for predicting the performance of those metals considered for application in the extreme radiation environment. Predicting mechanical performance after long term radiation exposure is of great importance to extending the life of current nuclear reactors and for developing future materials for the next generation of reactors. A combination of finite element modeling, nanoindentation, and TEM characterization were used to rapidly determine the microstructure and mechanical properties influences of ion irradiation on a standard 316L stainless steel sample. The results of this study found that ion irradiation and small scale mechanical property testing can be used to characterize extensive levels of radiation damage structure, only when significant consideration is given to ion irradiation depth, surface roughness and polishing condition, the irradiation temperature, and.many other experimental parameters. © 2012 The Minerals, Metals, & Materials Society. All rights reserved.

More Details

Biomolecular interactions and responses of human epithelial and macrophage cells to engineered nanomaterials

Bachand, George B.; Brozik, Susan M.; Bachand, Marlene B.; Aaron, Jesse S.; Timlin, Jerilyn A.; Achyuthan, Komandoor A.; Kotula, Paul G.

Engineered nanomaterials (ENMs) are increasingly being used in commercial products, particularly in the biomedical, cosmetic, and clothing industries. For example, pants and shirts are routinely manufactured with silver nanoparticles to render them 'wrinkle-free.' Despite the growing applications, the associated environmental health and safety (EHS) impacts are completely unknown. The significance of this problem became pervasive within the general public when Prince Charles authored an article in 2004 warning of the potential social, ethical, health, and environmental issues connected to nanotechnology. The EHS concerns, however, continued to receive relatively little consideration from federal agencies as compared with large investments in basic nanoscience R&D. The mounting literature regarding the toxicology of ENMs (e.g., the ability of inhaled nanoparticles to cross the blood-brain barrier; Kwon et al., 2008, J. Occup. Health 50, 1) has spurred a recent realization within the NNI and other federal agencies that the EHS impacts related to nanotechnology must be addressed now. In our study we proposed to address critical aspects of this problem by developing primary correlations between nanoparticle properties and their effects on cell health and toxicity. A critical challenge embodied within this problem arises from the ability to synthesize nanoparticles with a wide array of physical properties (e.g., size, shape, composition, surface chemistry, etc.), which in turn creates an immense, multidimensional problem in assessing toxicological effects. In this work we first investigated varying sizes of quantum dots (Qdots) and their ability to cross cell membranes based on their aspect ratio utilizing hyperspectral confocal fluorescence microscopy. We then studied toxicity of epithelial cell lines that were exposed to different sized gold and silver nanoparticles using advanced imaging techniques, biochemical analyses, and optical and mass spectrometry methods. Finally we evaluated a new assay to measure transglutaminase (TG) activity; a potential marker for cell toxicity.

More Details

Fast neutron environments

Hattar, Khalid M.; Puskar, J.D.; Doyle, Barney L.; Boyce, Brad B.; Buchheit, Thomas E.; Foiles, Stephen M.; Lu, Ping L.; Clark, Blythe C.; Kotula, Paul G.; Goods, Steven H.

The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

More Details
Results 1–200 of 318
Results 1–200 of 318