Publications

Results 76–100 of 217
Skip to search filters

Sandia Review of High Bridge Associates Report: Comparison of Plutonium Disposition Alternatives: WIPP Diluted Plutonium Storage and MOX Fuel Irradiation

Shoemaker, Paul E.; Hardin, Ernest H.; Park, Heeho D.; Brady, Patrick V.; Rechard, Robert P.

The subject report from High Bridge Associates (HBA) was issued on March 2, 2016, in reaction to a U.S. Department of Energy (DOE) program decision to pursue down-blending of surplus Pu and geologic disposal at the Waste Isolation Pilot Plant (WIPP). Sandia National Laboratories was requested by the DOE to review the technical arguments presented in the HBA report. Specifically, this review is organized around three technical topics: criticality safety, radiological release limits, and thermal impacts. Questions raised by the report pertaining to legal and regulatory requirements, safeguards and security, international agreements, and costing of alternatives, are beyond the scope of this review.

More Details

Field test to evaluate deep borehole disposal

Radwaste Solutions

Hardin, Ernest H.; Brady, Patrick V.; Clark, Andrew; Cochran, John R.; Freeze, Geoff; Kuhlman, Kristopher L.; MacKinnon, Bob; Sassani, David C.; Su, Jiann-Cherng S.

Sandia National Laboratories has begun research on the potential use of deep boreholes for the dis¬posal of radioactive waste. Characterization activities will focus on measurements and samples that are important for evaluating the long-term iso¬lation capability of the deep borehole disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable deep borehole field test (DBFT) site and a site management contractor is now under way.

More Details

Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

Bioresource Technology

Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V.; Hewson, John C.; Muylaert, Koenraad

Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

More Details
Results 76–100 of 217
Results 76–100 of 217