Publications

Results 26–50 of 53
Skip to search filters

Engineering Paper-Based Sensors for Zika Virus

Trends in Molecular Medicine

Meagher, Robert M.; Negrete, Oscar N.; Van Rompay, Koen K.

The emergence of Zika virus (ZIKV) infections in Latin America and Southeast Asia has created an urgent need for new, simple, yet sensitive, diagnostic tests. We highlight recent work using paper-based sensors coupled with CRISPR/Cas9 to detect ZIKV RNA as a new approach to achieve rapid development and deployment of field-ready diagnostics for emerging infectious diseases.

More Details

Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events

Hayden, Carl C.; Negrete, Oscar N.; Davis, Ryan W.

Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

More Details

Microfluidic platforms for RNA interference screening of virus-host interactions

Lab on a Chip

Schudel, Benjamin R.; Harmon, Brooke N.; Abhyankar, Vinay V.; Pruitt, Benjamin W.; Negrete, Oscar N.; Singh, Anup K.

RNA interference (RNAi) is a powerful tool for functional genomics with the capacity to comprehensively analyze host-pathogen interactions. High-throughput RNAi screening is used to systematically perturb cellular pathways and discover therapeutic targets, but the method can be tedious and requires extensive capital equipment and expensive reagents. To aid in the development of an inexpensive miniaturized RNAi screening platform, we have developed a two part microfluidic system for patterning and screening gene targets on-chip to examine cellular pathways involved in virus entry and infection. First, a multilayer polydimethylsiloxane (PDMS)-based spotting device was used to array siRNA molecules into 96 microwells targeting markers of endocytosis, along with siRNA controls. By using a PDMS-based spotting device, we remove the need for a microarray printer necessary to perform previously described small scale (e.g. cellular microarrays) and microchip-based RNAi screening, while still minimizing reagent usage tenfold compared to conventional screening. Second, the siRNA spotted array was transferred to a reversibly sealed PDMS-based screening platform containing microchannels designed to enable efficient cell loading and transfection of mammalian cells while preventing cross-contamination between experimental conditions. Validation of the screening platform was examined using Vesicular stomatitis virus and emerging pathogen Rift Valley fever virus, which demonstrated virus entry pathways of clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively. The techniques here are adaptable to other well-characterized infection pathways with a potential for large scale screening in high containment biosafety laboratories. © 2013 The Royal Society of Chemistry.

More Details

A C. elegans-based foam for rapid on-site detection of residual live virus

Negrete, Oscar N.; Kozina, Carol L.; Tucker, Mark D.; Hardesty, Jasper O.

In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

More Details

Microfluidic devices to elucidate human gene participation in infection of rift valley fever virus

15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011

Schudel, Benjamin R.; Negrete, Oscar N.; Harmon, Brooke N.; Pruitt, Benjamin W.; Singh, Anup K.

A microfluidic RNA interference screening device was designed to study which genes are involved in Rift Valley Fever Virus (RVFV) infection. Spots of small interfering RNA (siRNA) are manually spotted onto a glass microscope slide, and aligned to a screening device designed to accommodate cell seeding, siRNA transfection, cell culture, virus infection and imaging analysis. This portable and disposable PDMS-based microfluidic device for RNAi screening was designed for a 96-well library of transfection against variety of gene targets. Current results show transfection of GFP-22 siRNA within the device, as compared to controls, which inhibit the expression of GFP produced by recombinant RVFV. This technique can be applied to host-pathogen interactions for highly dangerous systems in BSL-3/4 laboratories, where bulky robotic equipment is not ideal.

More Details

Investigation of type-I interferon dysregulation by arenaviruses : a multidisciplinary approach

Branda, Catherine B.; James, Conrad D.; Kozina, Carol L.; Manginell, Ronald P.; Misra, Milind; Moorman, Matthew W.; Negrete, Oscar N.; Ricken, James B.; Wu, Meiye W.

This report provides a detailed overview of the work performed for project number 130781, 'A Systems Biology Approach to Understanding Viral Hemorrhagic Fever Pathogenesis.' We report progress in five key areas: single cell isolation devices and control systems, fluorescent cytokine and transcription factor reporters, on-chip viral infection assays, molecular virology analysis of Arenavirus nucleoprotein structure-function, and development of computational tools to predict virus-host protein interactions. Although a great deal of work remains from that begun here, we have developed several novel single cell analysis tools and knowledge of Arenavirus biology that will facilitate and inform future publications and funding proposals.

More Details
Results 26–50 of 53
Results 26–50 of 53