Fundamental Links between Microstructure Environment and Friction in Metals
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Additive Manufacturing
Processing of the low workability Fe-Co-1.5V (Hiperco ® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification, which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. Magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco ® alloys. Hiperco ® is a registered trademark of Carpenter Technologies, Readings, PA.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Scripta Materialia
We demonstrate inverse Hall-Petch behavior (softening) in pure copper sliding contacts at cryogenic temperatures. By kinetically limiting grain growth, it is possible to generate a quasi-stable ultra-nanocrystalline surface layer with reduced strength. In situ electrical contact resistance measurements were used to determine grain size evolution at the interface, in agreement with reports of softening in highly nanotwinned copper. We also show evidence of a direct correlation between surface grain size and friction coefficient, validating a model linking friction in pure metals and the transition from dislocation mediated plasticity to grain boundary sliding.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
This work demonstrates the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS2). We report on systematic investigations of oxidation and friction for two MoS2 films with distinctively different microstructures - amorphous and planar/highly-ordered - before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS2 films showed a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.