Materials by Design: Using Atomistic Mechanisms to Create Wear-Resistant Alloys
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Precision Engineering
Contact probing of gaging surfaces is used throughout dimensional metrology. Probe tips such as ruby, sapphire, or diamond are commonly employed as styli for universal length measuring machines (ULMs) and coordinate measuring machines (CMMs) due to the hardness, durability, and wear resistance. Gaging surfaces of gage blocks are precision ground or lapped, with very low surface roughness to enable wringing. Damage or contamination of these surfaces can prevent wringing and lead to measurement error. Experimental investigations using a horizontal ULM and CMM have revealed that even at low force settings (≤0.16 N), probe materials such as ruby and sapphire can cause plastic deformation to hardened carbon chrome steel (such as AISI 52,100) gage block surfaces at the microscale, likely attributed to fretting-associated wear. Under some conditions, permanent transfer of material from the probe stylus to the gaging surface is possible. Results demonstrate irreversible changes and damage to gaging surfaces with repeated probe contact on a ULM and CMM. Optical microscopy, optical profilometry, and scanning electron microscopy (SEM) provide a semi-quantitative assessment of microscale plastic deformation and material transfer. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and Raman techniques confirm chemical constituency of reference materials used (gage blocks and probes) and also identify makeup of deposits on gaging surfaces following probe contact.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nanoscale
Nanocrystalline metals offer significant improvements in structural performance over conventional alloys. However, their performance is limited by grain boundary instability and limited ductility. Solute segregation has been proposed as a stabilization mechanism, however the solute atoms can embrittle grain boundaries and further degrade the toughness. In the present study, we confirm the embrittling effect of solute segregation in Pt-Au alloys. However, more importantly, we show that inhomogeneous chemical segregation to the grain boundary can lead to a new toughening mechanism termed compositional crack arrest. Energy dissipation is facilitated by the formation of nanocrack networks formed when cracks arrested at regions of the grain boundaries that were starved in the embrittling element. This mechanism, in concert with triple junction crack arrest, provides pathways to optimize both thermal stability and energy dissipation. A combination of in situ tensile deformation experiments and molecular dynamics simulations elucidate both the embrittling and toughening processes that can occur as a function of solute content.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Carbon
Diamond-like carbon (DLC) films were tribochemically formed from ambient hydrocarbons on the surface of a highly stable nanocrystalline Pt-Au alloy. A sliding contact between an alumina sphere and Pt-Au coated steel exhibited friction coefficients as low as μ = 0.01 after dry sliding in environments containing trace (ppb) organics. Ex situ analysis indicated that the change in friction coefficient was due to the formation of amorphous carbon films, and Raman spectroscopy and elastic recoil analysis showed that these films consist of sp2/sp3 amorphous carbon with as much as 20% hydrogen. Transmission electron microscopy indicated these films had thicknesses exceeding 100 nm, and were enhanced by the incorporation of worn Pt-Au nanoparticles. The result was highly wear-resistant, low-friction DLC/Pt-Au nanocomposites. Atomistic simulations of hydrocarbons under shear between rigid Pt slabs using a reactive force field showed stress-induced changes in bonding through chain scission, a likely route towards the formation of these coatings. This novel demonstration of in situ tribochemical formation of self-lubricating films has significant impact potential in a wide range of engineering applications.
This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Materials
Recent work suggests that thermally stable nanocrystallinity in metals is achievable in several binary alloys by modifying grain boundary energies via solute segregation. The remarkable thermal stability of these alloys has been demonstrated in recent reports, with many alloys exhibiting negligible grain growth during prolonged exposure to near-melting temperatures. Pt–Au, a proposed stable alloy consisting of two noble metals, is shown to exhibit extraordinary resistance to wear. Ultralow wear rates, less than a monolayer of material removed per sliding pass, are measured for Pt–Au thin films at a maximum Hertz contact stress of up to 1.1 GPa. This is the first instance of an all-metallic material exhibiting a specific wear rate on the order of 10−9 mm3 N−1 m−1, comparable to diamond-like carbon (DLC) and sapphire. Remarkably, the wear rate of sapphire and silicon nitride probes used in wear experiments are either higher or comparable to that of the Pt–Au alloy, despite the substantially higher hardness of the ceramic probe materials. High-resolution microscopy shows negligible surface microstructural evolution in the wear tracks after 100k sliding passes. Mitigation of fatigue-driven delamination enables a transition to wear by atomic attrition, a regime previously limited to highly wear-resistant materials such as DLC.