Publications

Results 51–72 of 72
Skip to search filters

Effect of nanoscale patterned interfacial roughness on interfacial toughness

Reedy, Earl D.; Moody, Neville R.; Zimmerman, Jonathan A.; Zhou, Xiaowang Z.

The performance and the reliability of many devices are controlled by interfaces between thin films. In this study we investigated the use of patterned, nanoscale interfacial roughness as a way to increase the apparent interfacial toughness of brittle, thin-film material systems. The experimental portion of the study measured the interfacial toughness of a number of interfaces with nanoscale roughness. This included a silicon interface with a rectangular-toothed pattern of 60-nm wide by 90-nm deep channels fabricated using nanoimprint lithography techniques. Detailed finite element simulations were used to investigate the nature of interfacial crack growth when the interface is patterned. These simulations examined how geometric and material parameter choices affect the apparent toughness. Atomistic simulations were also performed with the aim of identifying possible modifications to the interfacial separation models currently used in nanoscale, finite element fracture analyses. The fundamental nature of atomistic traction separation for mixed mode loadings was investigated.

More Details

Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system

Moody, Neville R.

The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness as mixed mode loading approaches mode II conditions.

More Details

Modeling of friction-induced deformation and microstructures

Michael, Joseph R.; Battaile, Corbett C.; Moody, Neville R.; Jungk, John M.

Frictional contact results in surface and subsurface damage that could influence the performance, aging, and reliability of moving mechanical assemblies. Changes in surface roughness, hardness, grain size and texture often occur during the initial run-in period, resulting in the evolution of subsurface layers with characteristic microstructural features that are different from those of the bulk. The objective of this LDRD funded research was to model friction-induced microstructures. In order to accomplish this objective, novel experimental techniques were developed to make friction measurements on single crystal surfaces along specific crystallographic surfaces. Focused ion beam techniques were used to prepare cross-sections of wear scars, and electron backscattered diffraction (EBSD) and TEM to understand the deformation, orientation changes, and recrystallization that are associated with sliding wear. The extent of subsurface deformation and the coefficient of friction were strongly dependent on the crystal orientation. These experimental observations and insights were used to develop and validate phenomenological models. A phenomenological model was developed to elucidate the relationships between deformation, microstructure formation, and friction during wear. The contact mechanics problem was described by well-known mathematical solutions for the stresses during sliding friction. Crystal plasticity theory was used to describe the evolution of dislocation content in the worn material, which in turn provided an estimate of the characteristic microstructural feature size as a function of the imposed strain. An analysis of grain boundary sliding in ultra-fine-grained material provided a mechanism for lubrication, and model predictions of the contribution of grain boundary sliding (relative to plastic deformation) to lubrication were in good qualitative agreement with experimental evidence. A nanomechanics-based approach has been developed for characterizing the mechanical response of wear surfaces. Coatings are often required to mitigate friction and wear. Amongst other factors, plastic deformation of the substrate determines the coating-substrate interface reliability. Finite element modeling has been applied to predict the plastic deformation for the specific case of diamond-like carbon (DLC) coated Ni alloy substrates.

More Details

LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings

Mayer, T.M.; Scharf, Thomas W.; Prasad, Somuri V.; Moody, Neville R.; Goeke, Ronald S.; Dugger, Michael T.; Grubbs, Robert K.; Jungk, John M.

Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

More Details

Process-Based Quality Tools to Verify Cleaning and Surface Preparation

Giunta, Rachel K.; Emerson, John A.; Giunta, Rachel K.; Reedy, Earl D.; Adams, David P.; Lemke, Paul A.; Moody, Neville R.

A test method, the Tensile Brazil Nut Sandwich (TBNS) specimen, was developed to measure mixed-mode interfacial toughness of bonded materials. Interfacial toughness measured by this technique is compared to the interfacial toughness of thin film adhesive coatings using a nanoindentation technique. The interfacial toughness of solvent-cast and melt-spun adhesive thin films is compared and found to be similar. Finally, the Johnson-Kendall-Roberts (JKR) technique is used to evaluate the cleanliness of aluminum substrates.

More Details
Results 51–72 of 72
Results 51–72 of 72