Publications

Results 26–38 of 38
Skip to search filters

Safeguards and process modeling for molten salt reactors

GLOBAL 2019 - International Nuclear Fuel Cycle Conference and TOP FUEL 2019 - Light Water Reactor Fuel Performance Conference

Shoman, Nathan; Cipiti, Benjamin B.; Betzler, Benjamin

Renewed interest in the development of molten salt reactors has created the need for analytical tools that can perform safeguards assessments on these advanced reactors. This work outlines a flexible framework to perform safeguards analyses on a wide range of advanced reactor designs. The framework consists of two parts, a process model and a safeguards tool. The process model, developed in MATLAB Simulink, simulates the flow materials through a reactor facility. These models are linked to SCALE/TRITON and SCALE/ORIGEN to approximate depletion and decay of fuel salts but are flexible enough to accommodate higher fidelity tools if needed. The safeguards tool uses the process data to calculate common statistical quantities of interest such as material unaccounted for (MUF) and Page's trend test on the standardized independent transformed MUF (SITMUF). This paper documents the development of these tools.

More Details

Development of a Liquid-Fueled Molten Salt Reactor Safeguards Model

Shoman, Nathan; Cipiti, Benjamin B.

This work describes the ongoing work to develop a molten salt reactor (MSR) model and associated tools for safeguards analysis. A new flowsheet was developed in collaboration with Oak Ridge National Laboratory (ORNL) for the Molten Salt Demonstration Reactor (MSDR). This design was chosen by ORNL as a generic baseline design that could be used for safeguards research. The model has simple chemical processing that is less extensive than the two-fluid flowsheet developed in the last year. A detailed TRITON reactor physics model, provided by ORNL, was implemented into the process model. The process model now includes reactor parameters such as K-eff and decay heat, which could be used as part of an advanced safeguards approach. Finally, a set of generic safeguards tools based on current safeguards approaches were developed. These tools are flexible and can be used with most MSR flowsheets. ACKNOWLEDGEMENTS This work was funded by the Materials Protection Accounting and Control Technologies (MPACT) working group as part of the Fuel Cycle Technologies Program under the U.S. Department of Energy, Office of Nuclear Energy. The authors would also like to acknowledge Ben Betz ler for his work on the reactor physics models that were incorporated into the work and the continued collaboration with ORNL staff.

More Details
Results 26–38 of 38
Results 26–38 of 38