Publications

Results 26–50 of 54
Skip to search filters

Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack

Chemistry of Materials

Yu, Yi; Baskin, Artem; Valero-Vidal, Carlos; Hahn, Nathan H.; Liu, Qiang; Zavadil, Kevin R.; Eichhorn, Bryan W.; Prendergast, David; Crumlin, Ethan J.

Electrochemistry is necessarily a science of interfacial processes, and understanding electrode/electrolyte interfaces is essential to controlling electrochemical performance and stability. Undesirable interfacial interactions hinder discovery and development of rational materials combinations. By example, we examine an electrolyte, magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) dissolved in diglyme, next to the Mg metal anode, which is purported to have a wide window of electrochemical stability. However, even in the absence of any bias, using in situ tender X-ray photoelectron spectroscopy, we discovered an intrinsic interfacial chemical instability of both the solvent and salt, further explained using first-principles calculations as driven by Mg2+ dication chelation and nucleophilic attack by hydroxide ions. The proposed mechanism appears general to the chemistry near or on metal surfaces in hygroscopic environments with chelation of hard cations and indicates possible synthetic strategies to overcome chemical instability within this class of electrolytes.

More Details

Computational examination of orientation-dependent morphological evolution during the electrodeposition and electrodissolution of magnesium

Journal of the Electrochemical Society

DeWitt, S.; Hahn, Nathan H.; Zavadil, Kevin R.; Thornton, K.

A new model of electrodeposition and electrodissolution is developed and applied to the evolution of Mg deposits during anode cycling. The model captures Butler-Volmer kinetics, facet evolution, the spatially varying potential in the electrolyte, and the time-dependent electrolyte concentration. The model utilizes a diffuse interface approach, employing the phase field and smoothed boundary methods. Scanning electron microscope (SEM) images of magnesium deposited on a gold substrate show the formation of faceted deposits, often in the form of hexagonal prisms. Orientation-dependent reaction rate coefficients were parameterized using the experimental SEM images. Three-dimensional simulations of the growth of magnesium deposits yield deposit morphologies consistent with the experimental results. The simulations predict that the deposits become narrower and taller as the current density increases due to the depletion of the electrolyte concentration near the sides of the deposits. Increasing the distance between the deposits leads to increased depletion of the electrolyte surrounding the deposit. Two models relating the orientation-dependence of the deposition and dissolution reactions are presented. The morphology of the Mg deposit after one deposition-dissolution cycle is significantly different between the two orientation-dependence models, providing testable predictions that suggest the underlying physical mechanisms governing morphology evolution during deposition and dissolution.

More Details

Passivation Dynamics in the Anisotropic Deposition and Stripping of Bulk Magnesium Electrodes during Electrochemical Cycling

ACS Applied Materials and Interfaces

Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan H.; Gölzhäuser, Armin; Zuo, Jian M.; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte. (Figure Presented).

More Details

Compatibility of a Conventional Non-aqueous Magnesium Electrolyte with a High Voltage V2O5 Cathode and Mg Anode

Sandia journal manuscript; Not yet accepted for publication

Zavadil, Kevin R.; Sa, Niya S.; Proffit, Danielle L.; Lipson, Albert L.; Liu, Miao L.; Gautam, Gopalakrishnan S.; Hahn, Nathan H.; Feng, Zhenxing F.; Fister, Timothy T.; Ren, Yang R.; Sun, Cheng-Jun S.; Vaughey, John T.; Liao, Chen L.; Fenter, Paul A.; Ceder, Gerbrand C.; Burrell, Anthony K.

A major roadblock for magnesium ion battery development is the availability of an electrolyte that can deposit Mg reversibly and at the same time is compatible with a high voltage cathode. We report a prospective full magnesium cell utilizing a simple, non-aqueous electrolyte composed of high concentration magnesium bis(trifluoromethane sulfonyl)imide in diglyme, which is compatible with a high voltage vanadium pentoxide (V2O5) cathode and a Mg metal anode. For this system, plating and stripping of Mg metal can be achieved with magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte over a wide concentration range, however, reversible insertion of Mg into V2O5 cathode can only be attained at high electrolyte concentrations. Reversible intercalation of Mg into V2O5 is characterized and confirmed by X-ray diffraction, X-ray absorption near edge spectroscopy and energy dispersive spectroscopy.

More Details
Results 26–50 of 54
Results 26–50 of 54