We have developed force fields for the calculation of adsorption of NH{sub 3}, CO{sub 2}, and H{sub 2}O on zeolite 4A by performing Gibbs ensemble Monte Carlo simulations to fit experimental isotherms at 298 K. The calculated NH{sub 3} and CO{sub 2} isotherms are in excellent agreement with experimental data over a wide range of temperatures and several orders of magnitude in pressure. We have calculated isotherms for H{sub 2}O in 4A using two different models and have found that H{sub 2}O saturates zeolite 4A even at pressures as low as 0.01 kPa for the range of temperatures studied. We have studied the geometry of the adsorption sites and their dependence on loading. At low pressures, CO{sub 2} molecules adsorb with their longitudinal axis pointing toward the center of the supercage, whereas at higher pressures, the two oxygen atoms are equidistant from the Na atom in the binding site.
We present low-temperature (T = 4K) photoluminescence studies of the effect of adding nitrogen to 6-nm-wide single-strained GaAsSb quantum wells on GaAs. The samples were grown by both MBE and MOCVD techniques. The nominal Sb concentration is about 30%. Adding about 1 to 2% N drastically reduced the bandgap energies from 1 to 0.75 eV, or 1.20 to 1.64 μm. Upon performing ex situ rapid thermal anneals, 825°C for 10s, the band gap energies as well as the photoluminescence intensities increased. The intensities increased by an order of magnitude for the annealed samples and the band gap energies increased by about 50 - 100 meV, depending on growth temperatures. The photoluminescence linewidths tended to decrease upon annealing. Preliminary results of a first-principles band structure calculation for the GaAsSbN system are also presented.
The authors discuss their new implementation of the Adaptive Coordinate Real-space Electronic Structure (ACRES) method for studying the atomic and electronic structure of infinite periodic as well as finite systems, based on density functional theory. This improved version aims at making the method widely applicable and efficient, using high performance Fortran on parallel architectures. The scaling of various parts of an ACRES calculation is analyzed and compared to that of plane-wave based methods. The new developments that lead to enhanced performance, and their parallel implementation, are presented in detail. They illustrate the application of ACRES to the study of elemental crystalline solids, molecules and complex crystalline materials, such as blue bronze and zeolites.
The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.
The conduction band minimum formation of GaAs{sub 0.5{minus}y}P{sub 0.5{minus}y}N{sub 2y} is investigated for small nitrogen compositions (0.1% < 2y < 1.0%), by using a pseudopotential technique. This formation is caused by two unusual processes both involving the deep-gap impurity level existing in the dilute alloy limit y {r_arrow} 0. The first process is an anticrossing with the {Gamma}{sub Ic}-like extended state of GaAs{sub 0.5}P{sub 0.5}. The second process is an interaction with other impurity levels forming a subband. These two processes are expected to occur in any alloys exhibiting a deep-gap impurity level at one of its dilute limit.
Se-intercalated graphite compounds (Se-GICs) are considered as promising candidates for room-temperature thermoelectric cooling devices. Here the authors analyze the crystallographic structure and electronic properties of these materials within the framework of density-functional theory. First, the Adaptive-Coordinate Real-space Electronic Structure (ACRES) code is used to determine the stable structure of a representative stage-2 Se-GIC by relaxing atomic positions. The stable configuration is found to be a pendant-type structure, in which each selenium is bonded covalently to two atoms within the same carbon layer, causing a local distortion of the in-plane conjugation of the graphite. Then, they use the full potential linearized augmented plane wave (FP-LAPW) method to calculate the electronic band structure of the material and discuss its properties. Near the Fermi energy E{sub F}, there are wide bands originating from the host graphitic electronic structure and a few very narrow bands mainly of Se 4p character. The latter bands contribute to high peaks in the density of states close to E{sub F}. They show that this feature, although typical of many good thermoelectrics, does not necessarily imply high thermopower in the case of Se-GICs.
The authors report a measurement of the variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1 and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy. The samples were grown by metal-organic chemical vapor deposition and the photoluminescence measurements were performed a 4K. The authors find that the value of the excitonic linewidth increases as a function of pressure until about 100 kbars after which it tends to saturate. This change in the excitonic linewidth is used to derive the pressure variation of the reduced mass of the exciton using a theoretical formalism which is based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The variation of the excitonic reduced mass thus derived is compared with that recently determined using a first-principles band structure calculation based on local density approximation.
The variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1% and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy is studied at 4 K. The excitonic linewidth increases as a function of pressure until about 100 kbar after which it tends to saturate. This pressure dependent excitonic linewidth is used to derive the pressure variation of the exciton reduced mass using a theoretical formalism based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The linewidth derived ambient pressure masses are compared and found to be in agreement with other mass measurements. The variation of this derived mass is compared with the results from a nearly first-principles approach in which calculations based on the local density approximation to the Kohn-Sham density functional theory are corrected using a small amount of experimental input.
We discuss a recent investigation of adatom behavior on the AlSb(001) surface using first-principles electronic structure methods based on the density functional theory. For Al and Sb adatoms, we find a number of novel adatom structures that differ dramatically from previous results for the superficially similar group-III arsenides. In particular, we conclude that it is energetically favorable for an Al adatom to incorporate substitutionally into the outermost layer of the AlSb surface. This observation helps motivate a proposed new reconstruction for the AlSb(001) surface. Finally, we argue that the unusual adatom behavior identified for this surface probably results from the presence of a dimer row composed of a double layer of group-V atoms in the reconstruction, and therefore, it should be generic to all of the antimonides, as well as, the c(4 × 4) reconstruction of the arsenides and phosphides.