What randomized benchmarking actually measures
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review A - Atomic, Molecular, and Optical Physics
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Using a novel formal methods approach, we have generated computer-veri ed proofs of major theorems pertinent to the quantum phase estimation algorithm. This was accomplished using our Prove-It software package in Python. While many formal methods tools are available, their practical utility is limited. Translating a problem of interest into these systems and working through the steps of a proof is an art form that requires much expertise. One must surrender to the preferences and restrictions of the tool regarding how mathematical notions are expressed and what deductions are allowed. Automation is a major driver that forces restrictions. Our focus, on the other hand, is to produce a tool that allows users the ability to con rm proofs that are essentially known already. This goal is valuable in itself. We demonstrate the viability of our approach that allows the user great exibility in expressing state- ments and composing derivations. There were no major obstacles in following a textbook proof of the quantum phase estimation algorithm. There were tedious details of algebraic manipulations that we needed to implement (and a few that we did not have time to enter into our system) and some basic components that we needed to rethink, but there were no serious roadblocks. In the process, we made a number of convenient additions to our Prove-It package that will make certain algebraic manipulations easier to perform in the future. In fact, our intent is for our system to build upon itself in this manner.
Abstract not provided.
Physical Review A - Atomic, Molecular, and Optical Physics
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In this paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. The method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters [Phys. Rev. Lett. 113, 080401 (2014)PRLTAO0031-9007 10.1103/PhysRevLett.113.080401].
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Communications in Mathematical Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.