Modeling the Aging and Reliability of Solder Joints
Abstract not provided.
Abstract not provided.
Ceramic Engineering and Science Proceedings
Glass-to-metal (GTM) seals maintain hermeticity while allowing the passage of electrical signals. Typically, these seals are comprised of one or more metal pins encapsulated in a glass which is contained in a metal shell. In compression seals, the coefficient of thermal expansion of the metal shell is greater than the glass, and the glass is expected to be in compression. Recent development builds of a multi-pin GTM seal revealed severe cracking of the glass, with cracks originating at or near the pin-glass interface, and propagating circumferentially. A series of finite element analyses (FEA) was performed for this seal with the material set: 304 stainless steel (SS304) shell, Schott S-8061 (or equivalent) glass, and Alloy 52 pins. Stress-strain data for both metals was fit by linear-hardening and power-law hardening plasticity models. The glass layer thickness and its location with respect to geometrical features in the shell were varied. Several additional design changes in the shell were explored. Results reveal that: (1) plastic deformation in the small-strain regime in the metals lead to radial tensile stresses in glass, (2) small changes in the mechanical behavior of the metals dramatically change the calculated stresses in the glass, and (3) seemingly minor design changes in the shell geometry influence the stresses in the glass significantly. Based on these results, guidelines for materials selection and design of seals are provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Accurate material models are fundamental to predictive structural finite element models. Because potting foams are routinely used to mitigate shock and vibration of encapsulated components in electro/mechanical systems, accurate material models for foams are needed. A viscoplastic foam constitutive model has been developed to represent the large nonlinear and rate dependent crush of a polyurethane foam throughout an application space defined by temperature, strain rate and strain levels. Validation of this viscoplastic model, which is implemented in the transient dynamic Presto finite element code, is being achieved by modeling and testing a series of structural geometries of increasing complexity that have been designed to ensure sensitivity to material parameters. Both experimental and analytical uncertainties are being quantified to ensure fair assessment of model validity. Quantitative model validation metrics are being developed to provide a means of comparing analytical model predictions with experimental observations. This paper focuses on model validation of foam/component behavior over a wide temperature, strain rate, and strain level range using a Presto viscoplastic finite element model. Experiments include simple foam/component test articles crushed in a series of drop table tests. Material variations of density have been included. A double blind validation process is described that brings together test data with model predictions.
International Journal of Materials and Structural Integrity
Abstract not provided.
International Journal of Solids and Structures
The foam material of interest in this investigation is a rigid closed-cell polyurethane foam PMDI with a nominal density of 20 pcf (320 kg/m3). Three separate types of compression experiments were conducted on foam specimens. The heterogeneous deformation of foam specimens and strain concentration at the foam-steel interface were obtained using the 3-dimensional digital image correlation (3D-DIC) technique. These experiments demonstrated that the 3D-DIC technique is able to obtain accurate and full-field large deformation of foam specimens, including strain concentrations. The experiments also showed the effects of loading configurations on deformation and strain concentration in foam specimens. These DIC results provided experimental data to validate the previously developed viscoplastic foam model (VFM). In the first experiment, cubic foam specimens were compressed uniaxially up to 60%. The full-field surface displacement and strain distributions obtained using the 3D-DIC technique provided detailed information about the inhomogeneous deformation over the area of interest during compression. In the second experiment, compression tests were conducted for cubic foam specimens with a steel cylinder inclusion, which imitate the deformation of foam components in a package under crush conditions. The strain concentration at the interface between the steel cylinder and the foam specimen was studied in detail. In the third experiment, the foam specimens were loaded by a steel cylinder passing through the center of the specimens rather than from its end surface, which created a loading condition of the foam components similar to a package that has been dropped. To study the effects of confinement, the strain concentration and displacement distribution over the defined sections were compared for cases with and without a confinement fixture.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.
IEEE Journal of Electronic Packaging
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Honeycomb is a structure that consists of two-dimensional regular arrays of open cells. High-density aluminum honeycomb has been used in weapon assemblies to mitigate shock and protect payload because of its excellent crush properties. In order to use honeycomb efficiently and to certify the payload is protected by the honeycomb under various loading conditions, a validated honeycomb crush model is required and the mechanical properties of the honeycombs need to be fully characterized. Volume I of this report documents an experimental study of the crush behavior of high-density honeycombs. Two sets of honeycombs were included in this investigation: commercial grade for initial exploratory experiments, and weapon grade, which satisfied B61 specifications. This investigation also includes developing proper experimental methods for crush characterization, conducting discovery experiments to explore crush behaviors for model improvement, and identifying experimental and material uncertainties.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Welding Journal - Research Supplement
Abstract not provided.
Abstract not provided.
Abstract not provided.
Welding Journal Research Supplement
Abstract not provided.
The main objective of this project was to develop reliable, low-cost techniques for joining silicon nitride (Si{sub 3}N{sub 4}) to itself and to metals. For Si{sub 3}N{sub 4} to be widely used in advanced turbomachinery applications, joining techniques must be developed that are reliable, cost-effective, and manufacturable. This project addressed those needs by developing and testing two Si{sub 3}N{sub 4} joining systems; oxynitride glass joining materials and high temperature braze alloys. Extensive measurements were also made of the mechanical properties and oxidation resistance of the braze materials. Finite element models were used to predict the magnitudes and positions of the stresses in the ceramic regions of ceramic-to-metal joints sleeve and butt joints, similar to the geometries used for stator assemblies.
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.