Publications

Results 26–50 of 71
Skip to search filters

Multi-pulse electron diode development for flash radiography

Digest of Technical Papers-IEEE International Pulsed Power Conference

Mazarakis, Michael G.; Cuneo, M.; Hess, M.; Kiefer, Mark L.; Leckbee, Joshua L.; McKee, R.; Rovang, Dean C.

Presently the Self Magnetic Pinch (SMP) diode is successfully utilized for flash radiography with pulsed power drivers. However, it is not capable of more than one pulse. Multi-pulse single-Axis radiography is most preferred since it provides images of time-evolving dynamic targets. In an SMP diode, because the anode cathode (A-K) gap is very small (∼1-2 cm), the debris from the anode converter target arrives soon after the first pulse and completely destroy the cathode electron emitter, and thus the diode cannot produce a second pulse. We propose a feasibility study to scientifically evaluate the idea of decoupling the anode converter from the cathode electron emitter. This work will be based on two successful previous works we have accomplished: first, making a very small pencil-like beam in a magnetically immersed foilless diode (M.G. Mazarakis et al., Applied Physics Letters, 7, pp. 832 (1996)); and second, successfully demonstrating the two-pulse operation of a foilless diode with the RIIM accelerator (M. G. Mazarakis et al., Applied Physics 64 part I pp. 4815, (1988) Our approach will combine the above experimentally demonstrated successful work. The generated beam of 40-50 kA will be propagated in the same diode magnetic solenoid for a sufficient distance before striking the converter target. This way the diode could be multi-pulsed before the target debris reaches the cathode. Although the above describes the option of a foilless diode and a solenoidal transport system, a similar design could be made for a non-immersed low emittance 10 kA velvet emitter foilless diode.

More Details

Millimeter-gap magnetically insulated transmission line power flow experiments

Digest of Technical Papers-IEEE International Pulsed Power Conference

Hutsel, Brian T.; Stoltzfus, Brian S.; Breden, E.W.; Fowler, W.E.; Jones, Peter A.; Justus, D.W.; Long, Finis W.; Lucero, Diego J.; Macrunnels, K.A.; Mazarakis, Michael G.; Mckenney, John M.; Moore, James M.; Mulville, Thomas D.; Porter, John L.; Savage, Mark E.; Stygar, William A.

An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs) the platform is driven by the Mykonos-V LTD accelerator to drive a coaxial MITL with a millimeter-scale anode-cathode gap the experiments conducted quantify the current loss in the MITL with respect to vacuum pumpdown time and vacuum pressure. MITL gaps between 1.0 mm and 1.3 mm were tested the experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps the 1.0 mm gap resulted in current losses of 40%-60% of the peak current the 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps.

More Details

Conceptual designs of 300-TW and 800-TW pulsed-power accelerators

Stygar, William A.; Fowler, William E.; Gomez, Matthew R.; Harmon, Roger L.; Herrmann, Mark H.; Huber, Dale L.; Hutsel, Brian T.; Bailey, James E.; Jones, Michael J.; Jones, Peter A.; Leckbee, Joshua L.; Lee, James R.; Lewis, Scot A.; Long, Finis W.; Lopez, Mike R.; Lucero, Diego J.; Matzen, M.K.; Mazarakis, Michael G.; McBride, Ryan D.; McKee, George R.; Nakhleh, Charles N.; Owen, Albert C.; Rochau, G.A.; Savage, Mark E.; Schwarz, Jens S.; Sefkow, Adam B.; Sinars, Daniel S.; Stoltzfus, Brian S.; Vesey, Roger A.; Wakeland, P.; Cuneo, M.E.; Flicker, Dawn G.; Focia, Ronald J.

Abstract not provided.

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, M.E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles N.; Bailey, James E.; Hansen, Stephanie B.; McBride, Ryan D.; Herrmann, Mark H.; Lopez, A.; Peterson, Kyle J.; Ampleford, David A.; Jones, Michael J.; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund Y.; McPherson, Leroy A.; Harding, Eric H.; Knapp, Patrick K.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John M.; Owen, Albert C.; McKee, George R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.W.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias G.; Rambo, Patrick K.; Sinars, Daniel S.; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Temporally shaped current pulses on a two-cavity linear transformer driver system

Digest of Technical Papers-IEEE International Pulsed Power Conference

Savage, Mark E.; Mazarakis, Michael G.; LeChien, K.R.; Stoltzfus, Brian S.; Stygar, William A.; Fowler, William E.; Madrid, E.A.; Miller, C.L.; Rose, D.V.

An important application for low impedance pulsed power drivers is creating high pressures for shock compression of solids. These experiments are useful for studying material properties under kilobar to megabar pressures. The Z driver at Sandia National Laboratories has been used for such studies on a variety of materials, including heavy water, diamond, and tantalum, to name a few. In such experiments, it is important to prevent shock formation in the material samples. Shocks can form as the sound speed increases with loading; at some depth in the sample a pressure significantly higher than the surface pressure can result. The optimum pressure pulse shape to prevent such shocks depends on the test material and the sample thickness, and is generally not a simple sinusoidal-shaped current as a function of time. A system that can create a variety of pulse shapes would be desirable for testing various materials and sample thicknesses. A large number of relatively fast pulses, combined, could create the widest variety of pulse shapes. Linear transformer driver systems, whose cavities consist of many parallel capacitor-switch circuits, could have considerable agility in pulse shape. © 2011 IEEE.

More Details

The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI

Mazarakis, Michael G.; Fowler, William E.; Matzen, M.K.; McDaniel, Dillon H.; McKee, George R.; Savage, Mark E.; Struve, Kenneth W.; Stygar, William A.; Woodworth, Joseph R.

Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores and other cavity components. Experimental results will be presented at the Conference and in future publications.

More Details
Results 26–50 of 71
Results 26–50 of 71