Publications

Results 1–25 of 50
Skip to search filters

Advantages of clustering in the phase classification of hyperspectral materials images

Microscopy and Microanalysis

Stork, Chris L.; Keenan, Michael R.

Despite the many demonstrated applications of factor analysis (FA) in analyzing hyperspectral materials images, FA does have inherent mathematical limitations, preventing it from solving certain materials characterization problems. A notable limitation of FA is its parsimony restriction, referring to the fact that in FA the number of components cannot exceed the chemical rank of a dataset. Clustering is a promising alternative to FA for the phase classification of hyperspectral materials images. In contrast with FA, the phases extracted by clustering do not have to be parsimonious. Clustering has an added advantage in its insensitivity to spectral collinearity that can result in phase mixing using FA. For representative energy dispersive X-ray spectroscopy materials images, namely a solder bump dataset and a braze interface dataset, clustering generates phase classification results that are superior to those obtained using representative FA-based methods. For the solder bump dataset, clustering identifies a Cu-Sn intermetallic phase that cannot be isolated using FA alone due to the parsimony restriction. For the braze interface sample that has collinearity among the phase spectra, the clustering results do not exhibit the physically unrealistic phase mixing obtained by multivariate curve resolution, a commonly utilized FA algorithm. © Microscopy Society of America 2010.

More Details

SVD + factor rotation : a powerful alternative to PCA in spectral image analysis

Keenan, Michael R.

Factor analysis has proven an effective approach for distilling high dimensional spectral-image data into a limited number of components that describe the spatial and spectral characteristics of the imaged sample. Principal Component Analysis (PCA) is the most commonly used factor analysis tool; however, PCA constrains both the spectral and abundance factors to be orthogonal, and forces the components to serially maximize the variance that each accounts for. Neither constraint has any basis in physical reality; thus, principal components are abstract and not easily interpreted. The mathematical properties of PCA scores and loadings also differ subtly, which has implications for how they can be used in abstract factor 'rotation' procedures such as Varimax. The Singular Value Decomposition (SVD) is a mathematical technique that is frequently used to compute PCA. In this talk, we will argue that SVD itself provides a more flexible framework for spectral image analysis since spatial-domain and spectral-domain singular vectors are treated in a symmetrical fashion. We will also show that applying an abstract rotation in our choice of either the spatial or spectral domain relaxes the orthogonality requirement in the complementary domain. For instance, samples are often approximately orthogonal in a spatial sense, that is, they consist of relatively discrete chemical phases. In such cases, rotating the singular vectors in a way designed to maximize the simplicity of the spatial representation yields physically acceptable and readily interpretable estimates of the pure-component spectra. This talk will demonstrate that this approach can achieve excellent results for difficult-to-analyze data sets obtained by a variety of spectroscopic imaging techniques.

More Details

Hyperspectral imaging of oil producing microalgae under thermal and nutritional stress

Powell, Amy J.; Davis, Ryan W.; Lane, Todd L.; Lane, Pamela L.; Keenan, Michael R.; Van Benthem, Mark V.

This short-term, late-start LDRD examined the effects of nutritional deprivation on the energy harvesting complex in microalgae. While the original experimental plan involved a much more detailed study of temperature and nutrition on the antenna system of a variety of TAG producing algae and their concomitant effects on oil production, time and fiscal constraints limited the scope of the study. This work was a joint effort between research teams at Sandia National Laboratories, New Mexico and California. Preliminary results indicate there is a photosystem response to silica starvation in diatoms that could impact the mechanisms for lipid accumulation.

More Details

The effects of pre-processing of image data on self-modeling image analysis

Journal of Chemometrics

Windig, W.; Keenan, Michael R.; Wise, B.M.

The use of chemical imaging of secondary ion mass spectrometry (SIMS) data for self-modeling image analysis (SIA) has special challenges because of the following reasons: (a) At higher counting rates, the data are non-linear. (b) The heteroscedastic nature of the noise causes structure in the data which gives rise to extra components. (c) There is a high amount of noise in SIMS data and outliers often cause problems. This paper will discuss an adaptation of a pre-processing method to correct for heteroscedastic noise and a method to minimize the effect of outlying pixels. Examples will be given of the following: (a) Different mixtures of palmitic and stearic acid on aluminum foil. (b) A film coating of polyvinyl acetate (PVA) and polystyrene (PS). (c) A sample of copper and nickel and a fused layer. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope

Journal of Chemometrics

Van Benthem, Mark H.; Keenan, Michael R.; Davis, Ryan W.; Liu, Ping; Jones, Howland D.; Haaland, David M.; Sinclair, Michael B.; Brasier, Allan R.

Hyperspectral imaging confocal microscopy (HSI-CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI-CM is a data rich technique that routinely generates two-way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three-way data with HSI-CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI-CM can be difficult to manage computationally. The 208 x 204 x 512 x 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three-way data are produced and the methods we have used to process them. Specifically, we show that co-adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

In situ X-ray diffraction analysis of (CFx)n batteries: signal extraction by multivariate analysis

Journal of Applied Crystallography

Rodriguez, Marko A.; Nagasubramanian, Ganesan N.; Keenan, Michael R.

In this study, (CFx)n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CFx)n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamic component which may be associated with the formation of an intermediate compound during the discharge process.

More Details
Results 1–25 of 50
Results 1–25 of 50