Publications

Results 26–50 of 89
Skip to search filters

Thickness scaling of pyroelectric response in thin ferroelectric Hf 1-xZr xO2 films

Applied Physics Letters

Smith, Sean S.; Henry, Michael D.; Brumbach, Michael T.; Rodriguez, Mark A.; Ihlefeld, Jon F.

In this study, the scaling of polarization and pyroelectric response across a thickness series (5–20 nm) of Hf0.58Zr0.42O2 films with TaN electrodes was characterized. Reduction in thickness from 20 nm to 5 nm resulted in a decreased remanent polarization from 17 to 2.8 μC cm-2. Accompanying the decreased remanent polarization was an increased absolute pyroelectric coefficient, from 30 to 58 μC m-2 K-1. The pyroelectric response of the 5 nm film was unstable and decreased logarithmically with time, while that of 10 nm and thicker films was stable over a time scale of >300 h at room temperature. Finally, the sign of the pyroelectric response was irreversible with differing polarity of poling bias for the 5 nm thick film, indicating that the enhanced pyroelectric response was of electret origins, whereas the pyroelectric response in thicker films was consistent with a crystallographic origin.

More Details

Random Laser Physical Unclonable Function

Scrymgeour, David S.; Shank, Joshua S.; Kaehr, Bryan J.; Henry, Michael D.; Spoerke, Erik D.; Smith, Sean S.; Andreasen, Jonathan A.; Brown, Roger B.; Roberston, Wesley R.

We report on the fabrication and characterization of nanocrystalline ZnO films for use as a random laser physical unclonable function (PUF). Correlation between processing conditions and film microstructure will be made to optimize the lasing properties and random response. We will specifically examine the repeatability and security of PUFs demonstrated in this novel 3 system. This demonstration has promise to impact many of Sandia's core missions including counterfeit detection. 4 4

More Details

Reactive sputter deposition of piezoelectric Sc0.12Al0.88N for contour mode resonators

Journal of Vacuum Science and Technology B

Henry, Michael D.; Young, Travis R.; Douglas, Erica A.; Griffin, Benjamin G.

Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. This work describes 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Furthermore, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.

More Details

Reactive sputter deposition of piezoelectric Sc0.12Al0.88N for contour mode resonators

Journal of Vacuum Science and Technology B

Henry, Michael D.; Young, Travis R.; Douglas, Erica A.; Griffin, Benjamin G.

Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.

More Details

Tunable Nitride Josephson Junctions

Missert, Nancy A.; Henry, Michael D.; Lewis, Rupert; Howell, Stephen W.; Wolfley, Steven L.; Brunke, Lyle B.; Wolak, Matthaeus W.

We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

More Details
Results 26–50 of 89
Results 26–50 of 89