Publications

Results 51–100 of 185
Skip to search filters

Interatomic Potentials Models for Cu-Ni and Cu-Zr Alloys

Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Najm, H.N.; Riegner, David R.; Windl, Wolfgang W.

This study explores a Bayesian calibration framework for the RAMPAGE alloy potential model for Cu-Ni and Cu-Zr systems, respectively. In RAMPAGE potentials, it is proposed that once calibrated potentials for individual elements are available, the inter-species interac- tions can be described by fitting a Morse potential for pair interactions with three parameters, while densities for the embedding function can be scaled by two parameters from the elemen- tal densities. Global sensitivity analysis tools were employed to understand the impact each parameter has on the MD simulation results. A transitional Markov Chain Monte Carlo al- gorithm was used to generate samples from the multimodal posterior distribution consistent with the discrepancy between MD simulation results and DFT data. For the Cu-Ni system the posterior predictive tests indicate that the fitted interatomic potential model agrees well with the DFT data, justifying the basic RAMPAGE assumtions. For the Cu-Zr system, where the phase diagram suggests more complicated atomic interactions than in the case of Cu-Ni, the RAMPAGE potential captured only a subset of the DFT data. The resulting posterior distri- bution for the 5 model parameters exhibited several modes, with each mode corresponding to specific simulation data and a suboptimal agreement with the DFT results.

More Details

Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification

Geraci, Gianluca G.; Eldred, Michael S.

In this work we propose an approach for accelerating Uncertainty Quantification (UQ) analysis in the context of Multifidelity applications. In the presence of complex multiphysics applications, which often require a prohibitive computational cost for each evaluation, mul- tifidelity UQ techniques try to accelerate the convergence of statistics by leveraging the in- formation collected from a larger number of a lower fidelity model realizations. However, at the-state-of-the-art, the performance of virtually all the multifidelity UQ techniques is related to the correlation between the high and low-fidelity models. In this work we proposed to design a multifidelity UQ framework based on the identification of independent important directions for each model. The main idea is that if the responses of each model can be represented in a common space, this latter can be shared to enhance the correlation when the samples are drawn with respect to it instead of the original variables. There are also two main additional advantages that follow from this approach. First, the models might be correlated even if their original parametrizations are chosen independently. Second, if the shared space between mod- els has a lower dimensionality than the original spaces, the UQ analysis might benefit from a dimension reduction standpoint. In this work we designed this general framework and we also tested it on several test problems ranging from analytical functions for verification purpose, up to more challenging application problems as an aero-thermo-structural analysis and a scramjet flow analysis.

More Details

Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin S.; Sargsyan, Khachik S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem L.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. Finally, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem M.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

Multifidelity uncertainty quantification using spectral stochastic discrepancy models

Handbook of Uncertainty Quantification

Eldred, Michael S.; Ng, Leo W.T.; Barone, Matthew F.; Domino, Stefan P.

When faced with a restrictive evaluation budget that is typical of today's highfidelity simulation models, the effective exploitation of lower-fidelity alternatives within the uncertainty quantification (UQ) process becomes critically important. Herein, we explore the use of multifidelity modeling within UQ, for which we rigorously combine information from multiple simulation-based models within a hierarchy of fidelity, in seeking accurate high-fidelity statistics at lower computational cost. Motivated by correction functions that enable the provable convergence of a multifidelity optimization approach to an optimal high-fidelity point solution, we extend these ideas to discrepancy modeling within a stochastic domain and seek convergence of a multifidelity uncertainty quantification process to globally integrated high-fidelity statistics. For constructing stochastic models of both the low-fidelity model and the model discrepancy, we employ stochastic expansion methods (non-intrusive polynomial chaos and stochastic collocation) computed by integration/interpolation on structured sparse grids or regularized regression on unstructured grids. We seek to employ a coarsely resolved grid for the discrepancy in combination with a more finely resolved Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Grid for the low-fidelity model. The resolutions of these grids may be defined statically or determined through uniform and adaptive refinement processes. Adaptive refinement is particularly attractive, as it has the ability to preferentially target stochastic regions where the model discrepancy becomes more complex, i.e., where the predictive capabilities of the low-fidelity model start to break down and greater reliance on the high-fidelity model (via the discrepancy) is necessary. These adaptive refinement processes can either be performed separately for the different grids or within a coordinated multifidelity algorithm. In particular, we present an adaptive greedy multifidelity approach in which we extend the generalized sparse grid concept to consider candidate index set refinements drawn from multiple sparse grids, as governed by induced changes in the statistical quantities of interest and normalized by relative computational cost. Through a series of numerical experiments using statically defined sparse grids, adaptive multifidelity sparse grids, and multifidelity compressed sensing, we demonstrate that the multifidelity UQ process converges more rapidly than a single-fidelity UQ in cases where the variance of the discrepancy is reduced relative to the variance of the high-fidelity model (resulting in reductions in initial stochastic error), where the spectrum of the expansion coefficients of the model discrepancy decays more rapidly than that of the high-fidelity model (resulting in accelerated convergence rates), and/or where the discrepancy is more sparse than the high-fidelity model (requiring the recovery of fewer significant terms).

More Details

A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications

19th AIAA Non-Deterministic Approaches Conference, 2017

Geraci, Gianluca G.; Eldred, Michael S.; Iaccarino, Gianluca

The accurate evaluation of the performance of complex engineering devices needs to rely on high-fidelity numerical simulations and the systematic characterization and propagation of uncertainties. Several sources of uncertainty may impact the performance of an engineering device through operative conditions, manufacturing tolerances, and even physical models. In the presence of multiphysics systems the number of the uncertain parameters can be fairly large and their propagation through the numerical codes still remains prohibitive because the overall computational budget often allows for only an handful of such high-fidelity realizations. On the other side, common engineering practice can take advantage from a solid history of development and assessment of so called low-fidelity models which albeit less accurate are often capable to at least capture overall trends and parameter dependencies of the system. In this contribution we address the forward propagation of uncertainty parameters relying on statistical estimators built on sequences of numerical and physical discretizations which are provably convergent to the high-fidelity statistics, while exploiting low-fidelity computational models to increase the reliability and confidence in the numerical predictions. The performances of the approaches are presented by means of two fairly complicated aerospace problems, namely the aero-thermo-structural analysis of a turbofan engine nozzle and a flow through a scramjet-like device.

More Details

Uncertainty Quantification in LES Computations of Turbulent Multiphase Combustion in a Scramjet Engine ? ScramjetUQ ?

Najm, H.N.; Debusschere, Bert D.; Safta, Cosmin S.; Sargsyan, Khachik S.; Huan, Xun H.; Oefelein, Joseph C.; Lacaze, Guilhem M.; Vane, Zachary P.; Eldred, Michael S.; Geraci, Gianluca G.; Knio, Omar K.; Sraj, I.S.; Scovazzi, G.S.; Colomes, O.C.; Marzouk, Y.M.; Zahm, O.Z.; Menhorn, F.M.; Ghanem, R.G.; Tsilifis, P.T.

Abstract not provided.

Uncertainty Quantification in LES Computations of Turbulent Multiphase Combustion in a Scramjet Engine

Najm, H.N.; Debusschere, Bert D.; Safta, Cosmin S.; Sargsyan, Khachik S.; Huan, Xun H.; Oefelein, Joseph C.; Lacaze, Guilhem M.; Vane, Zachary P.; Eldred, Michael S.; Geraci, G.G.; Knio, O.K.; Sraj, I.S.; Scovazzi, G.S.; Colomes, O.C.; Marzouk, Y.M.; Zahm, O.Z.; Augustin, F.A.; Menhorn, F.M.; Ghanem, R.G.; Tsilifis, P.T.

Abstract not provided.

Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection

Journal of Computational Physics

Jakeman, J.D.; Eldred, Michael S.; Sargsyan, Khachik S.

In this paper we present a basis selection method that can be used with ℓ1-minimization to adaptively determine the large coefficients of polynomial chaos expansions (PCE). The adaptive construction produces anisotropic basis sets that have more terms in important dimensions and limits the number of unimportant terms that increase mutual coherence and thus degrade the performance of ℓ1-minimization. The important features and the accuracy of basis selection are demonstrated with a number of numerical examples. Specifically, we show that for a given computational budget, basis selection produces a more accurate PCE than would be obtained if the basis were fixed a priori. We also demonstrate that basis selection can be applied with non-uniform random variables and can leverage gradient information.

More Details
Results 51–100 of 185
Results 51–100 of 185