Publications

Results 51–75 of 176
Skip to search filters

On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

Journal of Applied Physics

Argibay, Nicolas A.; Mogonye, J.E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T.W.; Dugger, Michael T.; Prasad, Somuri V.

We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situ electrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea = 12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol. % ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. The proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

More Details

Mechanically-induced degradation of metallic sliding electrical contacts in silicone fluid at room temperature

Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts

Dugger, Michael T.; Groysman, D.; Celina, Mathias C.; Alam, Todd M.; Argibay, Nicolas A.; Nation, Brendan L.; Prasad, Somuri V.

The degradation in electrical contact resistance of a contact pair sliding while submerged in silicone fluid has been investigated. While the contamination of electrical contacts by silicone vapors or migrating species at elevated temperature due to decomposition in electric arcs is well known, the present degradation mechanism appears to arise from chemical reactions in the silicone fluid at room temperature, catalyzed by the presence of the freshly-abraded metal surface. As a result of these reactions, a deposit containing Si, C and O forms in the vicinity of mechanical contact. The specific contact metals present and the availability of dissolved oxygen in the fluid have a dramatic influence on the quantity of reaction product formed. The chemistry of the deposit, proposed formation mechanisms, the impact on electrical contact resistance and mitigation strategies are discussed.

More Details

Thermally-activated pentanol delivery from precursor poly(p- phenylenevinylene)s for MEMS lubrication

Macromolecular Rapid Communications

Johnson, Ross S.; Washburn, Cody M.; Staton, Alan W.; Moorman, Matthew W.; Manginell, Ronald P.; Dugger, Michael T.; Dirk, Shawn M.

The synthesis of two new polyphenylene vinylene (PPV) precursor polymers which can be thermally induced to eliminate pentanol is presented. Pentanol has recently been discovered to be a very useful lubricant in MicroElectroMechanical Systems. The utilization of the elimination reaction of precursor polymers to PPV as a small molecule delivery platform has, to the best of our knowledge, not been previously reported. The elimination reactions were examined using thermal gravimetric analysis, gas chromatography, and UV-Vis spectroscopy. Using PPV precursors allows for (1) a high loading of lubricant (one molecule per monomeric unit), (2) a platform that requires relatively high temperatures (>145 °C) to eliminate the lubricant, and (3) a non-volatile, mechanically and chemically stable by-product of the elimination reaction (PPV). The "on-demand" delivery of a vapor-phase lubricant to MicroElectoMechanical Systems (MEMS) will allow for scheduled or as-needed lubrication of the moving components, improving the performance, reliability, and lifespan of the devices. A delivery system utilizing a newly designed microhotplate along with two new precursor poly(p-phenylene vinylene) polymers that thermally eliminate a pentanol lubricant is described. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

More Details
Results 51–75 of 176
Results 51–75 of 176