Publications

Results 51–100 of 176
Skip to search filters

On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

Journal of Applied Physics

Argibay, Nicolas A.; Mogonye, J.E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T.W.; Dugger, Michael T.; Prasad, Somuri V.

We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situ electrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea = 12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol. % ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. The proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

More Details

Mechanically-induced degradation of metallic sliding electrical contacts in silicone fluid at room temperature

Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts

Dugger, Michael T.; Groysman, D.; Celina, Mathias C.; Alam, Todd M.; Argibay, Nicolas A.; Nation, Brendan L.; Prasad, Somuri V.

The degradation in electrical contact resistance of a contact pair sliding while submerged in silicone fluid has been investigated. While the contamination of electrical contacts by silicone vapors or migrating species at elevated temperature due to decomposition in electric arcs is well known, the present degradation mechanism appears to arise from chemical reactions in the silicone fluid at room temperature, catalyzed by the presence of the freshly-abraded metal surface. As a result of these reactions, a deposit containing Si, C and O forms in the vicinity of mechanical contact. The specific contact metals present and the availability of dissolved oxygen in the fluid have a dramatic influence on the quantity of reaction product formed. The chemistry of the deposit, proposed formation mechanisms, the impact on electrical contact resistance and mitigation strategies are discussed.

More Details

Thermally-activated pentanol delivery from precursor poly(p- phenylenevinylene)s for MEMS lubrication

Macromolecular Rapid Communications

Johnson, Ross S.; Washburn, Cody M.; Staton, Alan W.; Moorman, Matthew W.; Manginell, Ronald P.; Dugger, Michael T.; Dirk, Shawn M.

The synthesis of two new polyphenylene vinylene (PPV) precursor polymers which can be thermally induced to eliminate pentanol is presented. Pentanol has recently been discovered to be a very useful lubricant in MicroElectroMechanical Systems. The utilization of the elimination reaction of precursor polymers to PPV as a small molecule delivery platform has, to the best of our knowledge, not been previously reported. The elimination reactions were examined using thermal gravimetric analysis, gas chromatography, and UV-Vis spectroscopy. Using PPV precursors allows for (1) a high loading of lubricant (one molecule per monomeric unit), (2) a platform that requires relatively high temperatures (>145 °C) to eliminate the lubricant, and (3) a non-volatile, mechanically and chemically stable by-product of the elimination reaction (PPV). The "on-demand" delivery of a vapor-phase lubricant to MicroElectoMechanical Systems (MEMS) will allow for scheduled or as-needed lubrication of the moving components, improving the performance, reliability, and lifespan of the devices. A delivery system utilizing a newly designed microhotplate along with two new precursor poly(p-phenylene vinylene) polymers that thermally eliminate a pentanol lubricant is described. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

More Details

Tribological challenges in MEMS and their mitigation via vapor phase lubrication

Proceedings of SPIE - The International Society for Optical Engineering

Dugger, Michael T.

MicroElectroMechanical Systems (MEMS) have become commercially successful in a number of niche applications. However, commercial success has only been possible where design, operating conditions, and materials result in devices that are not very sensitive to tribological effects. The use of MEMS in defense and national security applications will typically involve more challenging environments, with higher reliability and more complex functionality than required of commercial applications. This in turn will necessitate solutions to the challenges that have plagued MEMS since their inception - namely, adhesion, friction and wear. Adhesion during fabrication and immediately post-release has largely been resolved using hydrophobic coatings, but these coatings are not mechanically durable and do not inhibit surface degradation during extended operation. Tribological challenges in MEMS and approaches to mitigate the effects of adhesion, friction and wear are discussed. A new concept for lubrication of silicon MEMS using gas phase species is introduced. This "vapor phase lubrication" process has resulted in remarkable operating life of devices that rely on mechanical contact. VPL is also an effective lubrication approach for materials other than silicon, where traditional lubrication approaches are not feasible. The current status and remaining challenges for maturation of VPL are highlighted. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

More Details

Surface roughness of anodized titanium coatings

Chinn, Douglas A.; Dugger, Michael T.

Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

More Details

The role of polymer formation during vapor phase lubrication of silicon

Dugger, Michael T.; Ohlhausen, J.A.; Dirk, Shawn M.

The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. With a sufficient concentration of pentanol vapor present, sliding of a silica ball on an oxidized silicon wafer can proceed with no measurable wear. The initial results of time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of wear surfaces revealed a reaction product having thickness on the order of a monolayer, and with an ion spectrum that included fragments having molecular weights of 200 or more that occurred only inside the wear tracks. The parent alcohol molecule pentanol, has molecular weight of 88amu, suggesting that reactions of adsorbed alcohols on the wearing surfaces allowed polymerization of the alcohols to form higher molecular weight species. In addition to pin-on-disk studies, lubrication of silicon surfaces with pentanol vapors has also been demonstrated using MicroElectroMechanical Systems (MEMS) devices. Recent investigations of the reaction mechanisms of the alcohol molecules with the oxidized silicon surfaces have shown that wearless sliding requires a concentration of the alcohol vapor that is dependent upon the contact stress during sliding, with higher stress requiring a greater concentration of alcohol. Different vapor precursors including those with acid functionality, olefins, and methyl termination also produce polymeric reaction products, and can lubricate the silica surfaces. Doping the operating environment with oxygen was found to quench the formation of the polymeric reaction product, and demonstrates that polymer formation is not necessary for wearless sliding.

More Details

Tribological behavior of micron-scale polycrystalline silicon structural films in ambient air

Proceedings of SPIE - The International Society for Optical Engineering

Alsem, D.H.; Van Der Hulst, R.; Stach, E.A.; Dugger, Michael T.; De Hosson, J.T.; Ritchie, R.O.

As tribological properties are critical factors in the reliability of microelectromechanical systems, it is important to understand the physical processes and parameters governing wear and friction in silicon structural films. Dynamic friction, wear volumes and wear morphology have been studied for polysilicon devices from the Sandia SUMMiT VTM process actuated in ambient air at μN loads. A total of seven devices were tested. Roughly half of the devices showed a peak in the friction coefficient at three times the initial value with failure after 105 cycles. The other half of the devices behaved similarly initially; however, following the friction coefficient peak they displayed a lower steady-state friction regime with no failure for millions of cycles. Additionally, the nanoscale wear coefficient and roughness increased in the first ~105 cycles and then slowly decayed over several million cycles. Transmission electron microscopy studies revealed amorphous oxygen-rich debris. These measurements show that after a short adhesive wear regime, abrasive wear is the governing mechanism with failures attributed to differences in the local nanoscale surface morphology. Changing the relative humidity, sliding speed and load was found to influence the friction coefficient, but re-oxidation of worn polysilicon surfaces was only found to have an effect after periods of inactivity. © 2009 SPIE.

More Details
Results 51–100 of 176
Results 51–100 of 176