Publications

Results 76–100 of 166
Skip to search filters

Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations

Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoffrey L.; Marinella, Matthew J.

Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0 x 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

More Details

ALEGRA Update: Modernization and Resilience Progress

Robinson, Allen C.; Petney, Sharon P.; Drake, Richard R.; Weirs, Vincent G.; Adams, Brian M.; Vigil, Dena V.; Carpenter, John H.; Garasi, Christopher J.; Wong, Michael K.; Robbins, Joshua R.; Siefert, Christopher S.; Strack, Otto E.; Wills, Ann E.; Trucano, Timothy G.; Bochev, Pavel B.; Summers, Randall M.; Stewart, James R.; Ober, Curtis C.; Rider, William J.; Haill, Thomas A.; Lemke, Raymond W.; Cochrane, Kyle C.; Desjarlais, Michael P.; Love, Edward L.; Voth, Thomas E.; Mosso, Stewart J.; Niederhaus, John H.

Abstract not provided.

Density functional theory (DFT) simulations of polyethylene: Principal hugoniot, specific heats, compression and release isentropes

AIP Conference Proceedings

Cochrane, Kyle R.; Desjarlais, Michael P.; Mattsson, Thomas M.

An accurate equation of state (EOS) for polyethylene is required in order to model high energy density experiments for CH2 densities above 1 g/cc, temperatures above 1 eV, and pressures above 1 Mbar. Density Functional Theory (DFT) based molecular dynamics has been established as a method capable of yielding high fidelity results for many materials at a wide range of pressures and temperatures and has recently been applied to complex polymers such as polyethylene [1]. Using high density polyethylene as the reference state, we compute the principal Hugoniot to 350 GPa, compression isentrope, and several release isentropes from states on the principal Hugoniot. We also calculate the specific heat and the dissociation along the Hugoniot. Our simulation results are validated by comparing to experimental data [2, 3] and then used to construct a wide range EOS. © 2012 American Institute of Physics.

More Details
Results 76–100 of 166
Results 76–100 of 166