Publications

Results 51–100 of 166
Skip to search filters

Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

Science

Knudson, Marcus D.; Desjarlais, Michael P.; Becker, A.; Lemke, Raymond W.; Cochrane, Kyle C.; Savage, Mark E.; Bliss, David E.; Mattsson, Thomas M.; Redmer, R.

Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

More Details

Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

Physical Review B - Condensed Matter and Materials Physics

Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora P.

Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ∼400-1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ∼190 and ∼110 mg/cc silica aerogel standards. These data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. As an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

More Details

Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

Physical Review B - Condensed Matter and Materials Physics

Shulenburger, Luke N.; Desjarlais, Michael P.; Mattsson, Thomas M.

We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing density functional theory (DFT) and quantum Monte Carlo (QMC) treatments. The method is applied to address the longstanding discrepancy between DFT calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, in contrast to DAC data.

More Details

Shock compression experiments on Lithium Deuteride single crystals

Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

More Details

Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

Baczewski, Andrew D.; Shulenburger, Luke N.; Desjarlais, Michael P.; Magyar, Rudolph J.

In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

More Details

Density Functional Theory (DFT) simulations of porous tantalum pentoxide

Journal of Physics: Conference Series

Cochrane, K.R.; Vogler, Tracy V.; Desjarlais, Michael P.; Mattsson, Thomas M.

Density Functional Theory (DFT) based molecular dynamics has been established as a method capable of yielding high fidelity results for many materials at a wide range of pressures and temperatures and has recently been applied to complex polymers such as polyethylene, compounds such as ethane or CO2, and oxides such as MgO. We use this method to obtain a Grïneisen Γ and thereby build a Mie-Grüneisen equation of state (EOS) and a Rice-Walsh EOS for tantalum pentoxide (Ta2O5 or tantala) and compare to experimental data. The experimental data have initial densities (ρ00) of approximately 1.13, 3, and 7.4 g/cm 3 reduced from a crystalline of 8.36 g/cm3. We found that r becomes constant at higher temperatures and pressure, but is a function of both density and temperature at lower densities and temperatures. Finally, the Mie-Gruneisen EOS is adequate for modeling the slightly distended Hugoniot with an initial density of 7.4 g/cm3 however it is inadequate for the more porous Hugoniot, while the Rice-Walsh EOS combined with a P-λ crush model approximates the experimental data quite well. © Published under licence by IOP Publishing Ltd.

More Details

On the scaling of the magnetically accelerated flyer plate technique to currents greater than 20 MA

Journal of Physics: Conference Series

Lemke, Raymond W.; Knudson, Marcus D.; Cochrane, Kyle C.; Desjarlais, Michael P.; Asay, J.R.

In this article we discuss scaling the magnetically accelerated flyer plate technique to currents greater than is available on the Z accelerator. Peak flyer plate speeds in the range 7-46 km/s are achieved in pulsed power driven, hyper-velocity impact experiments on Z for peak currents in the range 8-20 MA. The highest (lowest) speeds are produced using aluminum (aluminum-copper) flyer plates. In either case, the ≈1 mm thick flyer plate is shocklessly accelerated by magnetic pressure to ballistic speed in ≈400 ns; it arrives at the target with a fraction of material at standard density. During acceleration a melt front, due to resistive heating, moves from the drive-side toward the target-side of the flyer plate; the speed of the melt front increases with increasing current. Peak flyer speeds on Z scale quadratically (linearly) with current at the low (high) end of the range. Magnetohydrodynamic simulation shows that the change in scaling is due to geometric deformation, and that linear scaling continues as current increases. However, the combined effects of shockless acceleration and resistive heating lead to an upper bound on the magnetic field feasible for pulsed power driven flyer plate experiments, which limits the maximum possible speed of a useful flyer plate to < 100 km/s. © Published under licence by IOP Publishing Ltd.

More Details

Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations

Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoffrey L.; Marinella, Matthew J.

Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0 x 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

More Details

ALEGRA Update: Modernization and Resilience Progress

Robinson, Allen C.; Petney, Sharon P.; Drake, Richard R.; Weirs, Vincent G.; Adams, Brian M.; Vigil, Dena V.; Carpenter, John H.; Garasi, Christopher J.; Wong, Michael K.; Robbins, Joshua R.; Siefert, Christopher S.; Strack, Otto E.; Wills, Ann E.; Trucano, Timothy G.; Bochev, Pavel B.; Summers, Randall M.; Stewart, James R.; Ober, Curtis C.; Rider, William J.; Haill, Thomas A.; Lemke, Raymond W.; Cochrane, Kyle C.; Desjarlais, Michael P.; Love, Edward L.; Voth, Thomas E.; Mosso, Stewart J.; Niederhaus, John H.

Abstract not provided.

Density functional theory (DFT) simulations of polyethylene: Principal hugoniot, specific heats, compression and release isentropes

AIP Conference Proceedings

Cochrane, Kyle R.; Desjarlais, Michael P.; Mattsson, Thomas M.

An accurate equation of state (EOS) for polyethylene is required in order to model high energy density experiments for CH2 densities above 1 g/cc, temperatures above 1 eV, and pressures above 1 Mbar. Density Functional Theory (DFT) based molecular dynamics has been established as a method capable of yielding high fidelity results for many materials at a wide range of pressures and temperatures and has recently been applied to complex polymers such as polyethylene [1]. Using high density polyethylene as the reference state, we compute the principal Hugoniot to 350 GPa, compression isentrope, and several release isentropes from states on the principal Hugoniot. We also calculate the specific heat and the dissociation along the Hugoniot. Our simulation results are validated by comparing to experimental data [2, 3] and then used to construct a wide range EOS. © 2012 American Institute of Physics.

More Details
Results 51–100 of 166
Results 51–100 of 166