Publications

Results 76–97 of 97
Skip to search filters

Solid-state lighting technology perspective

Coltrin, Michael E.; Tsao, Jeffrey Y.

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

More Details

Final report on LDRD project : outstanding challenges for AlGaInN MOCVD

Creighton, J.R.; Koleske, Daniel K.; Wang, George T.; Coltrin, Michael E.; Allerman, A.A.; Russell, Michael J.; Mitchell, Christine C.; Follstaedt, D.M.

The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.

More Details

Understanding GaN nucleation layer evolution on sapphire

Journal of Crystal Growth

Koleske, D.D.; Coltrin, Michael E.; Cross, K.C.; Mitchell, Christine C.; Allerman, A.A.

Optical reflectance and atomic force microscopy (AFM) are used to develop a detailed description of GaN nucleation layer (NL) evolution upon annealing in ammonia and hydrogen to 1050°C. For the experiments, the GaN NLs were grown to a thickness of 30nm at 540°C, and then heated to 1050°C, following by holding at 1050°C for additional time. As the temperature, T, is increased, the NL decomposes uniformly beginning at 850°C up to 980°C as observed by the decrease in the optical reflectance signal and the absence of change in the NL AFM images. Decomposition of the original NL material drives the formation of GaN nuclei on top of the NL, which begin to appear on the NL near 1000°C, increasing the NL roughness. The GaN nuclei are formed by gas-phase transport of Ga atoms generated during the NL decomposition that recombine with ambient NH3. The gas-phase mechanism responsible for forming the GaN nuclei is demonstrated in two ways. First, the NL decomposition kinetics has an activation energy, EA, of 2.7 eV and this EA is observed in the NL roughening as the GaN nuclei increase in size. Second, the power spectral density functions measured with atomic force microscopy reveal that the GaN nuclei grow via an evaporation and recondensation mechanism. Once the original NL material is fully decomposed, the GaN nuclei stop growing in size and begin to decompose. For 30 nm thick NLs used in this study, approximately 1/3 of the NL Ga atoms are reincorporated into GaN nuclei. A detailed description of the NL evolution as it is heated to high temperature is presented, along with recommendations on how to enhance or reduce the NL decomposition and nuclei formation before high T GaN growth. © 2004 Elsevier B.V. All rights reserved.

More Details

Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting

Simmons, J.A.; Fischer, Arthur J.; Crawford, Mary H.; Abrams, B.L.; Biefeld, Robert M.; Koleske, Daniel K.; Allerman, A.A.; Figiel, J.J.; Creighton, J.R.; Coltrin, Michael E.; Tsao, Jeffrey Y.; Mitchell, Christine C.; Kerley, Thomas M.; Wang, George T.; Bogart, Katherine B.; Seager, Carleton H.; Campbell, Jonathan C.; Follstaedt, D.M.; Norman, Adam K.; Kurtz, S.R.; Wright, Alan F.; Myers, S.M.; Missert, Nancy A.; Copeland, Robert G.; Provencio, P.N.; Wilcoxon, Jess P.; Hadley, G.R.; Wendt, J.R.; Kaplar, Robert K.; Shul, Randy J.; Rohwer, Lauren E.; Tallant, David T.; Simpson, Regina L.; Moffat, Harry K.; Salinger, Andrew G.; Pawlowski, Roger P.; Emerson, John A.; Thoma, Steven T.; Cole, Phillip J.; Boyack, Kevin W.; Garcia, Marie L.; Allen, Mark S.; Burdick, Brent B.; Rahal, Nabeel R.; Monson, Mary A.; Chow, Weng W.; Waldrip, Karen E.

This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.

More Details

Nature of the parasitic chemistry during AlGaInN OMVPE

Proposed for publication in Journal of Crystal Growth.

Creighton, J.R.; Creighton, J.R.; Wang, George T.; Breiland, William G.; Coltrin, Michael E.

Using in situ laser light scattering, we have observed gas-phase nanoparticles formed during AlN, GaN and InN OMVPE. The response of the scattering intensity to a wide range of conditions indicates that the AlN parasitic chemistry is considerably different from the corresponding GaN and InN chemistry. A simple CVD particle-growth mechanism is introduced that can qualitatively explain the observed particle size and yields a strong residence time dependence. We also used FTIR to directly examine the reactivity of the metalorganic precursors with NH{sub 3} in the 25-300 C range. For trimethylaluminum/NH{sub 3} mixtures a facile CH{sub 4} elimination reaction is observed, which also produces gas-phase aminodimethylalane, i.e. Al(CH{sub 3}){sub 2}NH{sub 2}. For trimethylgallium and trimethylindium the dominant reaction is reversible adduct formation. All of the results indicate that the AlN particle-nucleation mechanism is predominately of a concerted nature, while the GaN and InN particle-nucleation mechanisms involve homogeneous pyrolysis and radical chemistry.

More Details

Surfkin: A program to solve transient and steady state heterogeneous reaction kinetics

Coltrin, Michael E.; Wixom, Ryan R.

Heterogeneous chemical reactions occurring at a gas/surface interface are fundamental in a variety of important applications, such as combustion, catalysis, chemical vapor deposition and plasma processing. Detailed simulation of these processes may involve complex, coupled fluid flow, heat transfer, gas-phase chemistry, in addition to heterogeneous reaction chemistry. This report documents the Surfkin program, which simulates the kinetics of heterogeneous chemical reactions. The program is designed for use with the Chemkin and Surface Chemkin (heterogeneous chemistry) programs. It calculates time-dependent or steady state surface site fractions and bulk-species production/destruction rates. The surface temperature may be specified as a function of time to simulate a temperature-programmed desorption experiment, for example. This report serves as a user's manual for the program, explaining the required input and format of the output. Two detailed example problems are included to further illustrate the use of this program.

More Details
Results 76–97 of 97
Results 76–97 of 97