We have used a deep-depletion CCD camera in single-hit mode to measure X-ray conversion efficiencies with Z-Beamlet and Z-Petawatt. Z-Petawatt is superior to Z-Beamlet for X-rays harder than 10 keV. For diffraction samples with Z > 42, we likely require X-rays with 15 keV or higher photon energy (Z-Petawatt). We are developing a robust, reproducible setup for X-ray polycapillaries as a part for X-ray diffraction experiments (XRD).
The carbon phase diagram is rich with polymorphs which possess very different physical and optical properties ideal for different scientific and engineering applications. An understanding of the dynamically driven phase transitions in carbon is particularly important for applications in inertial confinement fusion, as well as planetary and meteorite impact histories. Experiments on the Z Pulsed Power Facility at Sandia National Laboratories generate dynamically compressed high-pressure states of matter with exceptional uniformity, duration, and size that are ideal for investigations of fundamental material properties. X-ray diffraction (XRD) is an important material physics measurement because it enables direct observation of the strain and compression of the crystal lattice, and it enables the detection and identification of phase transitions. Several unique challenges of dynamic compression experiments on Z prevent using XRD systems typically utilized at other dynamic compression facilities, so novel XRD diagnostics have been designed and implemented. We performed experiments on Z to shock compress carbon (pyrolytic graphite) samples to pressures of 150–320 GPa. The Z-Beamlet Laser generated Mn-Heα (6.2 keV) X-rays to probe the shock-compressed carbon sample, and the new XRD diagnostics measured changes in the diffraction pattern as the carbon transformed into its high-pressure phases. Quantitative analysis of the dynamic XRD patterns in combination with continuum velocimetry information constrained the stability fields and melting of high-pressure carbon polymorphs.
We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.
Helium or neopentane can be used as surrogate gas fill for deuterium (D2) or deuterium-tritium (DT) in laser-plasma interaction studies. Surrogates are convenient to avoid flammability hazards or the integration of cryogenics in an experiment. To test the degree of equivalency between deuterium and helium, experiments were conducted in the Pecos target chamber at Sandia National Laboratories. Observables such as laser propagation and signatures of laser-plasma instabilities (LPI) were recorded for multiple laser and target configurations. It was found that some observables can differ significantly despite the apparent similarity of the gases with respect to molecular charge and weight. While a qualitative behaviour of the interaction may very well be studied by finding a suitable compromise of laser absorption, electron density, and LPI cross sections, a quantitative investigation of expected values for deuterium fills at high laser intensities is not likely to succeed with surrogate gases.
Here we present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.
Many experiments at Sandia’s Z Pulsed Power Facility require x-ray backlighting diagnostics to understand experiment performance. Due to limitations in present-day source/detection modalities, most x-ray diagnostics at Z are restricted to photon energies <20 keV, ultimately limiting the density, amount, and atomic number of targets diagnosable in experiments. These limitations force the use of low-Z materials like Beryllium, and they prevent acquisition of important backlighting data for materials/densities that are opaque to soft x-rays and where background emission from the Z load and transmission lines overwhelm diagnostics. In this LDRD project, we have investigated the design and development of a laser wakefield acceleration platform driven by the Z-Petawatt laser – a platform that would enable the generation of a pulsed, collimated beam of high energy x-rays up to 100 keV. Geometrical considerations for implementation on the Z Machine require the use of sacrificial mirrors, which have been tested in offline experiments in the Chama target chamber in building 983. Our results suggest the use of sacrificial mirrors would not necessarily inhibit the laser wakefield x-ray process, particularly with the benefits stemming from planned laser upgrades. These conclusions support the continuation of laser wakefield source research and the development of the necessary infrastructure to deliver the Z-Petawatt laser to the Z center section along the appropriate lines of sight. Ultimately, this new capability will provide unprecedented views through dense states of matter, enabling the use of previously incompatible target materials/designs, and uncovering a new set of observables accessible through diffraction and spectroscopy in the hard x-ray regime. These will amplify the data return on precious Z shots and enhance Sandia’s ability to investigate fundamental physics in support of national security.
We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.
We report on experimental measurements of how an externally imposed magnetic field affects plasma heating by kJ-class, nanosecond laser pulses. The experiments reported here took place in gas cells analogous to magnetized liner inertial fusion targets. We observed significant changes in laser propagation and energy deposition scale lengths when a 12T external magnetic field was imposed in the gas cell. We find evidence that the axial magnetic field reduces radial electron thermal transport, narrows the width of the heated plasma, and increases the axial plasma length. Reduced thermal conductivity increases radial thermal gradients. This enhances radial hydrodynamic expansion and subsequent thermal self-focusing. Our experiments and supporting 3D simulations in helium demonstrate that magnetization leads to higher thermal gradients, higher peak temperatures, more rapid blast wave development, and beam focusing with an applied field of 12T.
We’re happy to report that the full-aperture upgrade project, started in FY18, is now complete and short-pulse target experiments are underway. The table below lists the present performance level of ZPW. Additional laser improvements are in progress to increase the laser energy and pulse contrast along with implementing a correction for achromatic aberrations to reduce the focused spot size and pulse width.
At the Z Facility at Sandia National Laboratories, the magnetized liner inertial fusion (MagLIF) program aims to study the inertial confinement fusion in deuterium-filled gas cells by implementing a three-step process on the fuel: premagnetization, laser preheat, and Z-pinch compression. In the laser preheat stage, the Z-Beamlet laser focuses through a thin polyimide window to enter the gas cell and heat the fusion fuel. However, it is known that the presence of the few μm thick window reduces the amount of laser energy that enters the gas and causes window material to mix into the fuel. These effects are detrimental to achieving fusion; therefore, a windowless target is desired. The Lasergate concept is designed to accomplish this by "cutting"the window and allowing the interior gas pressure to push the window material out of the beam path just before the heating laser arrives. In this work, we present the proof-of-principle experiments to evaluate a laser-cutting approach to Lasergate and explore the subsequent window and gas dynamics. Further, an experimental comparison of gas preheat with and without Lasergate gives clear indications of an energy deposition advantage using the Lasergate concept, as well as other observed and hypothesized benefits. While Lasergate was conceived with MagLIF in mind, the method is applicable to any laser or diagnostic application requiring direct line of sight to the interior of gas cell targets.
All experiments involving the Pecos target chamber in calendar year (CY) 2020 were dedicated to Pre-Heat studies in the context of Magnetized Liner Inertial Fusion (MagLIF). Activities at the target area included actual laser shots but also diagnostic and maintenance, and preparatory work for experiments with cryogenically cooled targets. The latter took up a large part of CY2020’s shot availability, and consequently there were fewer shots performed than in previous years. Since the Z-Beamlet and Z-Petawatt lasers support multiple campaigns, we can only anticipate laser and laser-operator time for one out of three shot windows in a day, and typically not on every day of the week. For that reason, many of our non-shot activities need to be traded against shots as well.
The long-term x-ray diffraction (XRD) detector scheme compatible with Z-containment experiments will involve conversion of the diffracted x-rays to optical light, which will be transported away from the Z-Dynamic Materials Properties (DMP) load and detected on a fast-gated camera. In this so-called DIffraction SCintillator Optic (DISCO) scheme , the scintillator is coupled to a long, coherent imaging fiber bundle using a custom lens system with high numerical aperture. In addition, the DISCO diagnostic incorporates time-gating to allow measurement only during the short time window of the x-ray pulse in which XRD occurs, thereby significantly reducing unwanted background generated by the Z-DMP load. Dynamic compression experiments were performed at the Chama target chamber to evaluate the DISCO diagnostic . Specifically, a Zr sample was laser-shocked with the Chaco laser while the Z-Beamlet (ZBL) laser was used to generate x-rays, which enabled time-gated 6.7-keV XRD patterns from the compressed Zr sample to be obtained.
We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.
We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution Te(r,z). The results indicate that the magnetic field increases Te, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.
Prior to implosion in Magnetized Liner Inertial Fusion (MagLIF), the fuel is heated to temperatures on the order of several hundred eV with a multi-kJ, multi-ns laser pulse. We present two laser heated plasma experiments, relevant to the MagLIF preheat stage, performed at Z with beryllium liners filled with deuterium and a trace amount of argon. In one experiment, there is no magnetic field and, in the other, the liner and fuel are magnetized with an 8.5 T axial magnetic field. The recorded time integrated, spatially resolved spectra of the Ar K-shell emission are sensitive to electron temperature Te. Individual analysis of the spatially resolved spectra produces electron temperature distributions Te(z) that are resolved along the axis of laser propagation. In the experiment with magnetic field, the plasma reaches higher temperatures and the heated region extends deeper within the liner than in the unmagnetized case. Radiation magnetohydrodynamics simulations of the experiments are presented and post-processed. A comparison of the results from experimental and simulated data reveals that the simulations underpredict Te in both cases but the differences are larger in the case with magnetic field.
All experiments involving the Pecos target chamber in calendar year (CY) 2019 were dedicated to Pre-Heat studies in the context of Magnetized Liner Inertial Fusion (MagLIF). Activities at the target area included actual laser shots but also diagnostic and maintenance, and preparatory work for experiments with cryogenically cooled targets, which are anticipated for CY 2020. Since the Z-Beamlet and Z-Petawatt lasers support multiple campaigns, we can only anticipate laser and laser-operator time for one out of three shot windows in a day, and typically not on every day of the week. For that reason, many of our non-shot activities need to be traded against shots as well.
Distributed Phase Plates (DPP) are used in laser experiments to create homogenous intensity distributions of a distinct shape at the location of the laser focus. Such focal shaping helps with controlling the intensity that is impeding on the target. To efficiently use a DPP, the exact size and shape of the focal distribution is of critical importance. We recorded direct images of the focal distribution with ideal continuous-wave (CW) alignment lasers and with laser pulses delivered by the Z-Beamlet facility. As necessary to protect the imaging sensors, laser pulses will not be performed by full system shots, but rather with limited energy on so-called 'rod-shots', in which Z-Beamlet's main amplifiers do not engage. The images are subsequently analyzed for characteristic radii and shape. All characterizations were performed at the Pecos target area of Sandia with a lens of 3.2 m focal length.
Geissel, Matthias; Geddes, Cameron; Willingale, Louise; Winjum, Benjamin
Advances in HEDP research and limitations in currently established theories and models challenge us to better understand how high-intensity (>1014 W/cm2) laser light couples to plasmas. Considering both energy transfer processes and the resulting particle-beam and radiation generation, we find one overarching question: How do we understand, predict, and control laser-plasma interactions and laser-driven particle beams?
A multi-frame shadowgraphy diagnostic has been developed and applied to laser preheat experiments relevant to the Magnetized Liner Inertial Fusion (MagLIF) concept. The diagnostic views the plasma created by laser preheat in MagLIF-relevant gas cells immediately after the laser deposits energy as well as the resulting blast wave evolution later in time. The expansion of the blast wave is modeled with 1D radiation-hydrodynamic simulations that relate the boundary of the blast wave at a given time to the energy deposited into the fuel. This technique is applied to four different preheat protocols that have been used in integrated MagLIF experiments to infer the amount of energy deposited by the laser into the fuel. The results of the integrated MagLIF experiments are compared with those of two-dimensional LASNEX simulations. The best performing shots returned neutron yields ∼40-55% of the simulated predictions for three different preheat protocols.