A methodology for quadrilateral finite element mesh coarsening
Proposed for publication in the International Journal for Numerical Methods in Engineering.
Abstract not provided.
Proposed for publication in the International Journal for Numerical Methods in Engineering.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the 14th International Meshing Roundtable, IMR 2005
Unconstrained Plastering is a new algorithm with the goal of generating a conformal all-hexahedral mesh on any solid geometry assembly. Paving[1] has proven reliable for quadrilateral meshing on arbitrary surfaces. However, the 3D corollary, Plastering [2][3][4][5], is unable to resolve the unmeshed center voids due to being over-constrained by a pre-existing boundary mesh. Unconstrained Plastering attempts to leverage the benefits of Paving and Plastering, without the over-constrained nature of Plastering. Unconstrained Plastering uses advancing fronts to inwardly project unconstrained hexahedral layers from an unmeshed boundary. Only when three layers cross, is a hex element formed. Resolving the final voids is easier since closely spaced, randomly oriented quadrilaterals do not over-constrain the problem. Implementation has begun on Unconstrained Plastering, however, proof of its reliability is still forthcoming. © 2005 Springer-Verlag Berlin Heidelberg.