Publications

Results 101–150 of 342
Skip to search filters

DOE Big Idea Summit III: Solving the Information Technology Challenge Beyond Moore's Law: A New Path to Scaling

McCormick, Frederick B.; Shalf, John S.; Mitchell, Alan M.; Lentine, Anthony L.; Marinella, Matthew J.

This report captures the initial conclusions of the DOE seven National Lab team collaborating on the “Solving the Information Technology Energy Challenge Beyond Moore’s Law” initiative from the DOE Big Idea Summit III held in April of 2016. The seven Labs held a workshop in Albuquerque, NM in late July 2016 and gathered 40 researchers into 5 working groups: 4 groups spanning the levels of the co-design framework shown below, and a 5th working group focused on extending and advancing manufacturing approaches and coupling their constraints to all of the framework levels. These working groups have identified unique capabilities within the Labs to support the key challenges of this Beyond Moore’s Law Computing (BMC) vision, as well as example first steps and potential roadmaps for technology development.

More Details

Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

Conference Proceedings - IEEE International Conference on Rebooting Computing (ICRC)

Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; Knisely, Kathrine E.; Stevens, Jim E.; Van Heukelom, Michael V.; Hughart, David R.; James, Conrad D.; Marinella, Matthew J.

Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.

More Details

Piecewise empirical model (PEM) of resistive memory for pulsed analog and neuromorphic applications

Journal of Computational Electronics

Niroula, John N.; Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Schiek, Richard L.; Hughart, David R.; Hsia, Alexander W.; James, Conrad D.; Marinella, Matthew J.

With the end of Dennard scaling and the ever-increasing need for more efficient, faster computation, resistive switching devices (ReRAM), often referred to as memristors, are a promising candidate for next generation computer hardware. These devices show particular promise for use in an analog neuromorphic computing accelerator as they can be tuned to multiple states and be updated like the weights in neuromorphic algorithms. Modeling a ReRAM-based neuromorphic computing accelerator requires a compact model capable of correctly simulating the small weight update behavior associated with neuromorphic training. These small updates have a nonlinear dependence on the initial state, which has a significant impact on neural network training. Consequently, we propose the piecewise empirical model (PEM), an empirically derived general purpose compact model that can accurately capture the nonlinearity of an arbitrary two-terminal device to match pulse measurements important for neuromorphic computing applications. By defining the state of the device to be proportional to its current, the model parameters can be extracted from a series of voltages pulses that mimic the behavior of a device in an analog neuromorphic computing accelerator. This allows for a general, accurate, and intuitive compact circuit model that is applicable to different resistance-switching device technologies. In this work, we explain the details of the model, implement the model in the circuit simulator Xyce, and give an example of its usage to model a specific Ta / TaO x device.

More Details

Impact of linearity and write noise of analog resistive memory devices in a neural algorithm accelerator

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; Knisely, Kathrine E.; Stevens, Jim E.; Van Heukelom, Michael V.; Hughart, David R.; Niroula, John; James, Conrad D.; Marinella, Matthew J.

Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. This suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.

More Details

Achieving ideal accuracies in analog neuromorphic computing using periodic carry

Digest of Technical Papers - Symposium on VLSI Technology

Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Hsia, Alexander W.; Hughart, David R.; Fuller, Elliot J.; Talin, A.A.; James, Conrad D.; Plimpton, Steven J.; Marinella, Matthew J.

Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.

More Details

Temperature Effects on the Total Ionizing Dose Response of TaOx-based Memristive Bit Cells

2017 17th European Conference on Radiation and Its Effects on Components and Systems, RADECS 2017

McLain, Michael L.; McDonald, Joseph K.; Hjalmarson, Harold P.; Serrano, Jason D.; Cuoco, Roy P.; Hanson, Donald J.; Hughart, David R.; Marinella, Matthew J.; Hartman, E.F.

The effects of temperature on the total ionizing dose (TID) response of tantalum oxide (TaOx) memristive bit cells are investigated. The TaOx devices were manufactured by Sandia National Laboratories (SNL). In-situ data were obtained as a function of temperature, accumulated dose, and bias at the Gamma Irradiation Facility (GIF). The data indicate that devices reset into the high resistance off-state exhibit decreases in resistance when the temperature is increased. However, an increased susceptibility to TID at elevated temperatures was not observed.

More Details

Designing an analog crossbar based neuromorphic accelerator

2017 5th Berkeley Symposium on Energy Efficient Electronic Systems, E3S 2017 - Proceedings

Agarwal, Sapan A.; Hsia, Alexander W.; Jacobs-Gedrim, Robin B.; Hughart, David R.; Plimpton, Steven J.; James, Conrad D.; Marinella, Matthew J.

Resistive memory crossbars can dramatically reduce the energy required to perform computations in neural algorithms by three orders of magnitude when compared to an optimized digital ASIC [1]. For data intensive applications, the computational energy is dominated by moving data between the processor, SRAM, and DRAM. Analog crossbars overcome this by allowing data to be processed directly at each memory element. Analog crossbars accelerate three key operations that are the bulk of the computation in a neural network as illustrated in Fig 1: vector matrix multiplies (VMM), matrix vector multiplies (MVM), and outer product rank 1 updates (OPU)[2]. For an NxN crossbar the energy for each operation scales as the number of memory elements O(N2) [2]. This is because the crossbar performs its entire computation in one step, charging all the capacitances only once. Thus the CV2 energy of the array scales as array size. This fundamentally better than trying to read or write a digital memory. Each row of any NxN digital memory must be accessed one at a time, resulting in N columns of length O(N) being charged N times, requiring O(N3) energy to read a digital memory. Thus an analog crossbar has a fundamental O(N) energy scaling advantage over a digital system. Furthermore, if the read operation is done at low voltage and is therefore noise limited, the read energy can even be independent of the crossbar size, O(1) [2].

More Details

Non-metallic dopant modulation of conductivity in substoichiometric tantalum pentoxide: A first-principles study

Journal of Applied Physics

Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.

We apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σo) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta2O5, where each reference contains a single, neutral O vacancy center (VO0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at lowering Ta2Ox σo, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta2Ox σo, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO3 group formation, especially in the low σo reference. While N applications to dope and passivate oxides are prevalent, we found that N exacerbates the stochasticity of σo we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. We use direct first-principles predictions of σo to explore feasible Ta2O5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.

More Details

Compensating for parasitic voltage drops in resistive memory arrays

2017 IEEE 9th International Memory Workshop, IMW 2017

Agarwal, Sapan A.; Schiek, Richard S.; Marinella, Matthew J.

Parasitic resistances cause devices in a resistive memory array to experience different read/write voltages depending on the device location, resulting in uneven writes and larger leakage currents. We present a new method to compensate for this by adding extra series resistance to the drivers to equalize the parasitic resistance seen by all the devices. This allows for uniform writes, enabling multi-level cells with greater numbers of distinguishable levels, and reduced write power, enabling larger arrays.

More Details

A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

Nature Materials

Van De Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan A.; Marinella, Matthew J.; Talin, A.A.; Salleo, Alberto

The brain is capable of massively parallel information processing while consuming only ~1-100 fJ per synaptic event1,2. Inspired by the efficiency of the brain, CMOS-based neural architectures3 and memristors4,5 are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODeswitches at lowvoltage and energy (<10 pJ for 103 μm2 devices), displays >500 distinct, non-volatile conductance states within a~1V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems6,7. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

More Details

A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

Biologically Inspired Cognitive Architectures

James, Conrad D.; Aimone, James B.; Miner, Nadine E.; Vineyard, Craig M.; Rothganger, Fredrick R.; Carlson, Kristofor D.; Mulder, Samuel A.; Draelos, Timothy J.; Faust, Aleksandra; Marinella, Matthew J.; Naegle, John H.; Plimpton, Steven J.

Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.

More Details

Resistive memory device requirements for a neural algorithm accelerator

Proceedings of the International Joint Conference on Neural Networks

Agarwal, Sapan A.; Plimpton, Steven J.; Hughart, David R.; Hsia, Alexander W.; Richter, Isaac; Cox, Jonathan A.; James, Conrad D.; Marinella, Matthew J.

Resistive memories enable dramatic energy reductions for neural algorithms. We propose a general purpose neural architecture that can accelerate many different algorithms and determine the device properties that will be needed to run backpropagation on the neural architecture. To maintain high accuracy, the read noise standard deviation should be less than 5% of the weight range. The write noise standard deviation should be less than 0.4% of the weight range and up to 300% of a characteristic update (for the datasets tested). Asymmetric nonlinearities in the change in conductance vs pulse cause weight decay and significantly reduce the accuracy, while moderate symmetric nonlinearities do not have an effect. In order to allow for parallel reads and writes the write current should be less than 100 nA as well.

More Details

High-Speed and Low-Energy Nitride Memristors

Advanced Functional Materials

Choi, Byung J.; Torrezan, Antonio C.; Strachan, John P.; Kotula, Paul G.; Lohn, A.J.; Marinella, Matthew J.; Li, Zhiyong; Williams, R.S.; Yang, J.J.

High-performance memristors based on AlN films have been demonstrated, which exhibit ultrafast ON/OFF switching times (≈85 ps for microdevices with waveguide) and relatively low switching current (≈15 μA for 50 nm devices). Physical characterizations are carried out to understand the device switching mechanism, and rationalize speed and energy performance. The formation of an Al-rich conduction channel through the AlN layer is revealed. The motion of positively charged nitrogen vacancies is likely responsible for the observed switching.

More Details

Power signatures of electric field and thermal switching regimes in memristive SET transitions

Journal of Physics. D, Applied Physics

Hughart, David R.; Gao, Xujiao G.; Mamaluy, Denis M.; Marinella, Matthew J.; Mickel, Patrick R.

We present a study of the 'snap-back' regime of resistive switching hysteresis in bipolar TaOx memristors, identifying power signatures in the electronic transport. Using a simple model based on the thermal and electric field acceleration of ionic mobilities, we provide evidence that the 'snap-back' transition represents a crossover from a coupled thermal and electric-field regime to a primarily thermal regime, and is dictated by the reconnection of a ruptured conducting filament. We discuss how these power signatures can be used to limit filament radius growth, which is important for operational properties such as power, speed, and retention.

More Details
Results 101–150 of 342
Results 101–150 of 342