Publications

Results 76–84 of 84
Skip to search filters

SOI-Enabled MEMS Processes Lead to Novel Mechanical Optical and Atomic Physics Devices Presentation

Herrera, Gilbert V.; McCormick, Frederick B.; Nielson, Gregory N.; Nordquist, Christopher N.; Okandan, Murat O.; Olsson, Roy H.; Ortiz, Keith O.; Platzbecker, Mark R.; Resnick, Paul J.; Shul, Randy J.; Bauer, Todd B.; Sullivan, Charles T.; Watts, Michael W.; Blain, Matthew G.; Dodd, Paul E.; Dondero, Richard D.; Garcia, Ernest J.; Galambos, Paul; Hetherington, Dale L.; Hudgens, James J.

Abstract not provided.

SOI-Enabled MEMS Processes Lead to Novel Mechanical Optical and Atomic Physics Devices

Herrera, Gilbert V.; McCormick, Frederick B.; Nielson, Gregory N.; Nordquist, Christopher N.; Okandan, Murat O.; Olsson, Roy H.; Ortiz, Keith O.; Platzbecker, Mark R.; Resnick, Paul J.; Shul, Randy J.; Bauer, Todd B.; Sullivan, Charles T.; Watts, Michael W.; Blain, Matthew G.; Dodd, Paul E.; Dondero, Richard D.; Garcia, Ernest J.; Galambos, Paul; Hetherington, Dale L.; Hudgens, James J.

Abstract not provided.

MEMS-based arrays of micro ion traps for quantum simulation scaling

Blain, Matthew G.; Jokiel, Bernhard J.; Tigges, Chris P.

In this late-start Tier I Seniors Council sponsored LDRD, we have designed, simulated, microfabricated, packaged, and tested ion traps to extend the current quantum simulation capabilities of macro-ion traps to tens of ions in one and two dimensions in monolithically microfabricated micrometer-scaled MEMS-based ion traps. Such traps are being microfabricated and packaged at Sandia's MESA facility in a unique tungsten MEMS process that has already made arrays of millions of micron-sized cylindrical ion traps for mass spectroscopy applications. We define and discuss the motivation for quantum simulation using the trapping of ions, show the results of efforts in designing, simulating, and microfabricating W based MEMS ion traps at Sandia's MESA facility, and describe is some detail our development of a custom based ion trap chip packaging technology that enables the implementation of these devices in quantum physics experiments.

More Details

Micro mass spectrometer on a chip

Blain, Matthew G.; Cruz, Dolores C.; Fleming, J.G.

The design, simulation, fabrication, packaging, electrical characterization and testing analysis of a microfabricated a cylindrical ion trap ({mu}CIT) array is presented. Several versions of microfabricated cylindrical ion traps were designed and fabricated. The final design of the individual trap array element consisted of two end cap electrodes, one ring electrode, and a detector plate, fabricated in seven tungsten metal layers by molding tungsten around silicon dioxide (SiO{sub 2}) features. Each layer of tungsten is then polished back in damascene fashion. The SiO{sub 2} was removed using a standard release processes to realize a free-hung structure. Five different sized traps were fabricated with inner radii of 1, 1.5, 2, 5 and 10 {micro}m and heights ranging from 3-24 {micro}m. Simulations examined the effects of ion and neutral temperature, the pressure and nature of cooling gas, ion mass, trap voltage and frequency, space-charge, fabrication defects, and other parameters on the ability of micrometer-sized traps to store ions. The electrical characteristics of the ion trap arrays were determined. The capacitance was 2-500 pF for the various sized traps and arrays. The resistance was in the order of 1-2 {Omega}. The inductance of the arrays was calculated to be 10-1500 pH, depending on the trap and array sizes. The ion traps' field emission characteristics were assessed. It was determined that the traps could be operated up to 125 V while maintaining field emission currents below 1 x 10{sup -15} A. The testing focused on using the 5-{micro}m CITs to trap toluene (C{sub 7}H{sub 8}). Ion ejection from the traps was induced by termination of the RF voltage applied to the ring electrode and current measured on the collector electrode suggested trapping of ions in 1-10% of the traps. Improvements to the to the design of the traps were defined to minimize voltage drop to the substrate, thereby increasing trapping voltage applied to the ring electrode, and to allow for electron injection into, ion ejection from, and optical access to the trapping region.

More Details

Microfabricated thermal conductivity detector for the micro-ChemLab

Proposed for publication in Sensors and Actuators B.

Showalter, Steven K.; Gelbard, Fred G.; Manginell, Ronald P.; Blain, Matthew G.

This work describes the design, computational prototyping, fabrication, and characterization of a microfabricated thermal conductivity detector ({mu}TCD) to analyze the effluent from a micro-gas chromatograph column ({mu}GC) and to complement the detection efficacy of a surface acoustic wave detector in the micro-ChemLab{trademark} system. To maximize the detection sensitivity, we designed a four-filament Wheatstone bridge circuit where the resistors are suspended by a thin silicon nitride membrane in pyramidal or trapezoidal shaped flow cells. The geometry optimization was carried out by simulation of the heat transfer in the devices, utilizing a boundary element algorithm. Within microfabrication constraints, we determined and fabricated nine sensitivity-optimized geometries of the {mu}TCD. The nine optimal geometries were tested with two different flow patterns. We demonstrated that the perpendicular flow, where the gas directly impinged upon the membrane, yielded a sensitivity that is three times greater than the parallel flow, where the gas passed over the membrane. The functionality of the {mu}TCD was validated with the theoretical prediction and showed a consistent linear response to effluent concentrations, with a detection sensitivity of 1 ppm, utilizing less than 1 W of power.

More Details
Results 76–84 of 84
Results 76–84 of 84