Characterization of the Electromechanical Behavior of Zirconia-Rich PZT Ceramics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Abstract not provided.
Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface region and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.
Journal of Applied Crystallography
In this study, (CFx)n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CFx)n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamic component which may be associated with the formation of an intermediate compound during the discharge process.
Journal of Alloys and Compounds
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Tantalate materials play a vital role in our high technology society: tantalum capacitors are found in virtually every cell phone. Furthermore, electronic characteristics and the incredibly inert nature of tantalates renders them ideal for applications such as biomedical implants, nuclear waste forms, ferroelectrics, piezoelectrics, photocatalysts and optical coatings. The inert and insoluble nature of tantalates is not fundamentally understood; and furthermore poor solubility renders fabrication of novel or optimized tantalates very difficult. We have developed a soft chemical route to water-soluble tantalum oxide clusters that can serve as both precursors for novel tantalate materials and ideal models for experimental and computational approaches to understanding the unusually inert behavior of tantalates. The water soluble cluster, [Ta6O19]8- is small, highly symmetric, and contains the representative oxygen types of a metal oxide surface, and thus ideally mimics a complex tantalate surface in a simplistic form that can be studied unambiguously. Furthermore; in aqueous solution, these highly charged and super-basic clusters orchestrate surprising acid-base behavior that most likely plays an important role in the inertness of related oxide surfaces. Our unique synthetic approach to the [Ta6O19]8- cluster allowed for unprecedented enrichment with isotopic labels (17O), enabling detailed kinetic and mechanistic studies of the behavior of cluster oxygens, as well as their acid-base behavior. This SAND report is a collection of two publications that resulted from these efforts.
Abstract not provided.
Abstract not provided.
The sintering behavior of Sandia chem-prep high field varistor materials was studied using techniques including in situ shrinkage measurements, optical and scanning electron microscopy and x-ray diffraction. A thorough literature review of phase behavior, sintering and microstructure in Bi{sub 2}O{sub 3}-ZnO varistor systems is included. The effects of Bi{sub 2}O{sub 3} content (from 0.25 to 0.56 mol%) and of sodium doping level (0 to 600 ppm) on the isothermal densification kinetics was determined between 650 and 825 C. At {ge} 750 C samples with {ge}0.41 mol% Bi{sub 2}O{sub 3} have very similar densification kinetics, whereas samples with {le}0.33 mol% begin to densify only after a period of hours at low temperatures. The effect of the sodium content was greatest at {approx}700 C for standard 0.56 mol% Bi{sub 2}O{sub 3} and was greater in samples with 0.30 mol% Bi{sub 2}O{sub 3} than for those with 0.56 mol%. Sintering experiments on samples of differing size and shape found that densification decreases and mass loss increases with increasing surface area to volume ratio. However, these two effects have different causes: the enhancement in densification as samples increase in size appears to be caused by a low oxygen internal atmosphere that develops whereas the mass loss is due to the evaporation of bismuth oxide. In situ XRD experiments showed that the bismuth is initially present as an oxycarbonate that transforms to metastable {beta}-Bi{sub 2}O{sub 3} by 400 C. At {approx}650 C, coincident with the onset of densification, the cubic binary phase, Bi{sub 38}ZnO{sub 58} forms and remains stable to >800 C, indicating that a eutectic liquid does not form during normal varistor sintering ({approx}730 C). Finally, the formation and morphology of bismuth oxide phase regions that form on the varistors surfaces during slow cooling were studied.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Dalton Transactions
Abstract not provided.
Abstract not provided.