Publications

Results 51–100 of 220
Skip to search filters

Cubic erbium trihydride thin films

Thin Solid Films

Adams, D.P.; Rodriguez, Marko A.; Romero, Juan A.; Kotula, Paul G.; Banks, J.C.

High-purity, erbium hydride thin films have been deposited onto α-Al 2O 3 and oxidized Si by reactive sputtering methods. Rutherford backscattering spectrometry and elastic recoil detection show that films deposited at temperatures of 35, 150 and 275°C have a composition of 3H:1Er. Erbium trihydride films consist of a face-centered cubic erbium sub-lattice with a lattice parameter in the range of 5.11-5.20 Å. The formation of cubic ErH 3 is intriguing, because previous studies demonstrate a single trihydride phase with a hexagonal metal sub-lattice. The formation of a stable, cubic trihydride phase is attributed to a large, in-plane stress resulting from ion beam sputter deposition. © 2012 Elsevier B.V. All rights reserved.

More Details

Crystallization behavior of vapor-deposited hexanitroazobenzene (HNAB) films

AIP Conference Proceedings

Knepper, Robert; Tappan, Alexander S.; Rodriguez, Marko A.; Alam, M.K.; Martin, Laura E.; Marquez, M.P.

Vapor-deposited hexanitroazobenzene (HNAB) has been shown to form an amorphous structure as-deposited that crystallizes over a period ranging from several hours to several weeks, depending on the ambient temperature. Raman spectroscopy and x-ray diffraction were used to identify three distinct phases during the crystallization process: the as-deposited amorphous structure, the HNAB-II crystal structure, and an as-yet unidentified crystal structure. Significant qualitative differences in the nucleation and growth of the crystalline phases were observed between 65°C and 75°C. While the same two polymorphs form in all cases, significant variation in the quantities of each phase was observed as a function of temperature. © 2012 American Institute of Physics.

More Details

Using in-situ techniques to probe high-temperature reactions: Thermochemical cycles for the production of synthetic fuels from CO2 and water

Powder Diffraction

Coker, Eric N.; Rodriguez, Marko A.; Ambrosini, Andrea A.; Miller, James E.; Stechel, Ellen B.

Ferrites are promising materials for enabling solar-thermochemical cycles. Such cycles utilize solar-thermal energy to reduce the metal oxide, which is then re-oxidized by H2O or CO2, producing H2 or CO, respectively. Mixing ferrites with zirconia or yttria-stabilized zirconia (YSZ) greatly improves their cyclabilities. In order to understand this system, we have studied the behavior of iron oxide/8YSZ (8 mol-% Y2O3 in ZrO2) using in situ X-ray diffraction and thermogravimetric analyses at temperatures up to 1500 °C and under controlled atmosphere. The solubility of iron oxide in 8YSZ measured by XRD at room temperature was 9.4 mol-% Fe. The solubility increased to at least 10.4 mol-% Fe when heated between 800 and 1000 °C under inert atmosphere. Furthermore iron was found to migrate in and out of the 8YSZ phase as the temperature and oxidation state of the iron changed. In samples containing >9.4 mol-% Fe, stepwise heating to 1400 °C under helium caused reduction of Fe2O3 to Fe3O4 to FeO. Exposure of the FeO-containing material to CO2 at 1100 °C re-oxidized FeO to Fe3O4 with evolution of CO. Thermogravimetric analysis during thermochemical cycling of materials with a range of iron contents showed that samples with mostly dissolved iron utilized a greater proportion of the iron atoms present than did samples possessing a greater fraction of un-dissolved iron oxides.© 2012 JCPDS-ICDD.

More Details

Understanding and predicting metallic whisker growth and its effects on reliability : LDRD final report

Michael, Joseph R.; McKenzie, Bonnie B.; Grant, Richard P.; Yelton, William G.; Pillars, Jamin R.; Rodriguez, Marko A.

Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented. At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s). The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a review of previous literature on Sn whisker crystallography. The overall texture of the Sn films was also analyzed by EBSD. Finally, a short Appendix is included at the end of this report, in which the X-Ray diffraction (XRD) results are discussed and compared to the EBSD analyses of the overall textures of the Sn films. Sections 2, 3, and 4 have been or will be submitted as stand-alone papers in peer-reviewed technical journals. A bibliography of recent Sandia Sn whisker publications and presentations is included at the end of the report.

More Details

Synthesis and characterization of supported ferrites for thermochemical CO 2 splitting using concentrated solar energy

ACS National Meeting Book of Abstracts

Ambrosini, Andrea; Coker, Eric N.; Rodriguez, Marko A.; Ohlhausen, J.A.; Miller, James E.; Stechel-Speicher, Ellen B.

The Sunshine to Petrol effort at Sandia National Laboratories aims to convert CO 2 and water to liquid hydrocarbon fuel precursors using concentrated solar energy with redox-active metal oxide systems, such as ferrites: Fe 3O 4→3FeO+ 0.5O 2 (>1350°C) 3FeO + CO 2→Fe 3O 4 + CO (<1200°C). However, the ferrite materials are not repeatedly reactive on their own and require a support, such as yttria-stabilized zirconia (YSZ). The ferrite-support interaction is not well defined, as there has been little fundamental characterization of these oxides at the high temperatures and conditions present in these cycles. We have investigated the microstructure, structure-property relationships, and the role of the support on redox behavior of the ferrite composites. In-situ capabilities to elucidate chemical reactions under operating conditions have been developed. The synthesis, structural characterization (room and high- temperature x-ray diffraction, secondary ion mass spectroscopy, scanning electron microscopy), and thermogravimetric analysis of YSZ-supported ferrites will be discussed.

More Details

Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

Coker, Eric N.; Huang, Jian Y.; Rodriguez, Marko A.

In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

More Details
Results 51–100 of 220
Results 51–100 of 220