Publications

Results 76–85 of 85
Skip to search filters

Elastocapillarity: Adhesion and wetting in soft polymeric systems

Macromolecules

Cao, Zhen; Stevens, Mark J.; Dobrynin, Andrey V.

We have developed a generalized model of particle-substrate interactions describing both adhesion and wetting behavior. Using a combination of the molecular dynamics simulations and scaling analysis we have shown that the crossover between adhesion and wetting-like behavior for a particle with size Rp and shear modulus Gp interacting with a substrate of shear modulus Gs is determined by the dimensionless parameter β ∞ γ∗(G∗ Rp)-2/3W-1/3, where G∗ = GpGs/(Gp + Gs) is the effective shear modulus, W is the work of adhesion between particle and substrate, and γ∗ = Wgr + γp(1-2gr) + γspgr2 is the effective surface tension of the particle/substrate system with γp and γs being surface tensions of particle and substrate, γsp - surface tension of the particle-substrate interface, and gr = Gp/(Gp + Gs). This parameter β is proportional to the ratio of elastocapillary length γ∗/G∗ and contact radius a, β ∞ γ∗/G∗a. In the limit of small values of the parameter β < 1, when the contact radius a is larger than the elastocapillary length γ∗/G∗, our model reproduces Johnson, Kendall, and Roberts results for particle adhesion on elastic substrates (adhesion regime). However, in the opposite limit, β > 1 (a < γ∗/G∗), the capillary forces play a dominant role and determine particle-substrate interactions (wetting regime). Model predictions are in a very good agreement with simulation and experimental results.

More Details

Directed self-assembly of 1D microtubule nano-arrays

RSC Advances

Bachand, Marlene B.; Bouxsein, Nathan F.; Cheng, S.; Von Hoyningen-Huene, S.J.; Stevens, Mark J.; Bachand, George B.

Microtubules (MTs) are biological polymer filaments that display unique polymerization dynamics, and serve as inspiration for developing synthetic nanomaterials that exhibit similar assembly-derived behaviours. Here we explore an assembly process in which extended 1D nano-arrays (NAs) are formed through the directed, head-to-tail self-assembly of MT filaments. In particular, we demonstrate that the elongation of NAs over time is due to directed self-assembly of MTs by a process that is limited by diffusion and follows second-order rate kinetics. We further described a mechanism, both experimental and through molecular dynamics simulations, where stable junctions among MT building blocks are formed by alignment and adhesion of opposing filament ends, which is followed by formation of a stable junction through the incorporation of free tubulin and the removal of lattice vacancies. The fundamental principles described in this directed self-assembly process provide a promising basis for new approaches to manufacturing complex, heterostructured nanocomposites.

More Details
Results 76–85 of 85
Results 76–85 of 85