Publications

Results 26–41 of 41
Skip to search filters

High power semiconductor devices for facts: Current state of the art and opportunities for advanced materials

ECS Transactions

Marinella, M.J.; Atcitty, Stanley A.; DasGupta, Sandeepan D.; Kaplar, Robert K.; Smith, Mark A.

Flexible AC Transmission Systems (FACTS) use advanced power electronics to minimize reactive power loss on the grid. Power devices used in FACTS systems must be capable of switching several thousand amps at voltages of 1-10 kV. Traditionally, these systems have relied on silicon thyristors, but recently have also began to incorporate insulated gate bipolar transistors. FACTS systems present an opportunity for emerging SiC and GaN power transistors, which offer major efficiency gains. However, for these advanced materials to be considered for use in high consequence grid level systems like FACTS controllers, excellent reliability must be demonstrated. ©The Electrochemical Society.

More Details

Stress testing on silicon carbide electronic devices for prognostics and health management

Marinella, Matthew J.; Smith, Mark A.; Atcitty, Stanley A.

Power conversion systems for energy storage and other distributed energy resource applications are among the drivers of the important role that power electronics plays in providing reliable electricity. Wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) will help increase the performance and efficiency of power electronic equipment while condition monitoring (CM) and prognostics and health management (PHM) will increase the operational availability of the equipment and thereby make it more cost effective. Voltage and/or temperature stress testing were performed on a number of SiC devices in order to accelerate failure modes and to identify measureable shifts in electrical characteristics which may provide early indication of those failures. Those shifts can be interpreted and modeled to provide prognostic signatures for use in CM and/or PHM. Such experiments will also lead to a deeper understanding of basic device physics and the degradation mechanisms behind failure.

More Details

Power electronics reliability

Smith, Mark A.; Kaplar, Robert K.; Marinella, Matthew J.; Stanley, James B.

The project's goals are: (1) use experiments and modeling to investigate and characterize stress-related failure modes of post-silicon power electronic (PE) devices such as silicon carbide (SiC) and gallium nitride (GaN) switches; and (2) seek opportunities for condition monitoring (CM) and prognostics and health management (PHM) to further enhance the reliability of power electronics devices and equipment. CM - detect anomalies and diagnose problems that require maintenance. PHM - track damage growth, predict time to failure, and manage subsequent maintenance and operations in such a way to optimize overall system utility against cost. The benefits of CM/PHM are: (1) operate power conversion systems in ways that will preclude predicted failures; (2) reduce unscheduled downtime and thereby reduce costs; and (3) pioneering reliability in SiC and GaN.

More Details

Power electronics reliability analysis

Smith, Mark A.; Atcitty, Stanley A.

This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

More Details
Results 26–41 of 41
Results 26–41 of 41