Publications

Results 151–175 of 193
Skip to search filters

Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part II: Sequence of Crystallization and Phase Stability

Journal of the American Ceramic Society

Rodriguez, Mark A.; Griego, James J.M.; Dai, Steve X.

The sequence of crystallization in a recrystallizable lithium silicate sealing glass-ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high-temperature X-ray diffraction (HTXRD). Glass-ceramic specimens have been subjected to a two-stage heat-treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass-ceramic having a near-linear thermal strain, as opposed to the highly nonlinear glass-ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass-ceramics. While the inversion in cristobalite resembles the character of a first-order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid-solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass-ceramics.

More Details

Novel metal-organic frameworks for efficient stationary sources via oxyfuel combustion

Nenoff, T.M.; Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M.; Williams, T.C.; Shaddix, Christopher R.

Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

More Details

Electrodeposition of a High Magnetostriction CoFe Film

Pillars, Jamin R.; Langlois, Eric L.; Arrington, Christian L.; Monson, Todd M.; Hollowell, Andrew E.; Rodriguez, Mark A.

The development of an electrodeposition process for cobalt/iron (CoFe) alloys with minimal oxygen concentration and controlled stoichiometry is necessary for the advancement of magnetostrictive device functionalities. CoFe alloy films were electrodeposited out of a novel chemistry onto copper test structures enabling magnetic displacement testing for magnetostriction calculations. Using a combination of additives that served as oxygen scavengers, grain refiners, and complexing agents in conjunction with a pulsed plating technique, CoFe films were synthesized at thicknesses as high as 10μm with less than 8 at% oxygen at a stoichiometry of 70-75% Co and 25-30% Fe. X-Ray diffraction (XRD) analysis confirmed that these films had a crystal structure consistent with 70% Co 30% Fe Wairuaite with a slight lattice contraction due to Co doping in the film. A novel characterization technique was used to measure the displacement of the CoFe films electrodeposited, as a function of applied magnetic bias, in order to determine the saturation magnetostriction (λS) of the material. With this chemistry and a tailored pulse plating regime, λS values as high as 172 ± 25ppm have been achieved. This is believed by the authors to be the highest reported value of magnetostriction for an electrodeposited CoFe film.

More Details

Surface Assisted Formation of methane Hydrates on Ice and Na Montmorillonite Clay

Sandia journal manuscript; Not yet accepted for publication

Gordon, Margaret E.; Cygan, Randall T.; Teich-McGoldrick, Stephanie T.; Rodriguez, Mark A.; Meserole, Stephen M.

Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.

More Details

Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ

Nenoff, T.M.; Garino, Terry J.; Croes, Kenneth J.; Rodriguez, Mark A.

Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

More Details
Results 151–175 of 193
Results 151–175 of 193