Publications

Results 101–125 of 193
Skip to search filters

Impact of oleylamine: oleic acid ratio on the morphology of yttria nanomaterials

Journal of Materials Science

Treadwell, LaRico J.; Boyle, Timothy J.; Bell, Nelson S.; Rodriguez, Mark A.; Muntifering, Brittany R.; Hattar, Khalid M.

The impact on the final morphology of yttria (Y2O3) nanoparticles from different ratios (100/0, 90/10, 65/35, and 50/50) of oleylamine (ON) and oleic acid (OA) via a solution precipitation route has been determined. In all instances, powder X-ray diffraction indicated that the cubic Y2O3 phase (PDF #00-025-1200) with the space group I-3a (206) had been formed. Analysis of the collected FTIR data revealed the presence of stretches and bends consistent with ON and OA, for all ratios investigated, except the 100/0. Transmission electron microscopy images revealed regular and elongated hexagons were produced for the ON (100/0) sample. As OA was added, the nanoparticle morphology changed to lamellar pillars (90/10), then irregular particles (65/35), and finally plates (50/50). The formation of the hexagonal-shaped nanoparticles was determined to be due to the preferential adsorption of ON onto the {101} planes. As OA was added to the reaction mixture, it was found that the {111} planes were preferentially coated, replacing ON from the surface, resulting in the various morphologies noted. The roles of the ratio of ON/OA in the synthesis of the nanocrystals were elucidated in the formation of the various Y2O3 morphologies, as well as a possible growth mechanism based on the experimental data.

More Details

Multifunctional, Tunable Metal–Organic Framework Materials Platform for Bioimaging Applications [A Multifunctional Tunable MOF Materials Platform for Bio-Imaging Applications]

ACS Applied Materials and Interfaces

Sava Gallis, Dorina F.; Sava Gallis, Dorina F.; Rohwer, Lauren E.; Rohwer, Lauren E.; Rodriguez, Mark A.; Rodriguez, Mark A.; Dailey, Meghan C.; Dailey, Meghan C.; Butler, Kimberly B.; Butler, Kimberly B.; Luk, Ting S.; Luk, Ting S.; Timlin, Jerilyn A.; Timlin, Jerilyn A.; Chapman, Karena W.; Chapman, Karena W.

Herein, we describe a novel multifunctional metal–organic framework (MOF) materials platform that displays both porosity and tunable emission properties as a function of the metal identity (Eu, Nd, and tuned compositions of Nd/Yb). Their emission collectively spans the deep red to near-infrared (NIR) spectral region (~614–1350 nm), which is highly relevant for in vivo bioimaging. These new materials meet important prerequisites as relevant to biological processes: they are minimally toxic to living cells and retain structural integrity in water and phosphate-buffered saline. To assess their viability as optical bioimaging agents, we successfully synthesized the nanoscale Eu analog as a proof-of-concept system in this series. In vitro studies show that it is cell-permeable in individual RAW 264.7 mouse macrophage and HeLa human cervical cancer tissue culture cells. The efficient discrimination between the Eu emission and cell autofluorescence was achieved with hyperspectral confocal fluorescence microscopy, used here for the first time to characterize MOF materials. Importantly, this is the first report that documents the long-term conservation of the intrinsic emission in live cells of a fluorophore-based MOF to date (up to 48 h). As a result this finding, in conjunction with the materials’ very low toxicity, validates the biocompatibility in these systems and qualifies them as promising for use in long-term tracking and biodistribution studies.

More Details

Materials assurance through orthogonal materials measurements: X-ray fluorescence aspects

Powder Diffraction

Rodriguez, Mark A.; Van Benthem, Mark V.; Susan, D.F.; Griego, James J.M.; Yang, Pin Y.; Mowry, Curtis D.; Enos, David E.

X-ray fluorescence (XRF) has been employed as one of several orthogonal means of screening materials to prevent counterfeit and adulterated products from entering the product stream. We document the use of principal component analysis (PCA) of XRF data on compositionally similar and dissimilar stainless steels for the purpose of testing the feasibility of employing XRF spectra to parse and bin these alloys as the same or significantly different alloy materials. The results indicate that XRF spectra can separate and assign alloys via PCA, but that important corrections for detector drift and scaling must be performed in order to achieve valid results.

More Details

MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework

Journal of Physical Chemistry C

Spoerke, Erik D.; Small, Leo J.; Foster, Michael E.; Wheeler, Jill S.; Ullman, Andrew M.; Stavila, Vitalie S.; Rodriguez, Mark A.; Allendorf, Mark D.

Metal-organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer, taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. Continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies. (Figure Presented).

More Details

Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films

Applied Physics Letters

Smith, Sean S.; Kitahara, A.R.; Rodriguez, Mark A.; Henry, M.D.; Brumbach, Michael T.; Ihlefeld, Jon I.

Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm−2 K−1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, and 1).

More Details

Understanding the Effects of Cationic Dopants on α-MnO2 Oxygen Reduction Reaction Electrocatalysis

Journal of Physical Chemistry C

Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; Delker, Collin J.; Davis, Danae J.; Kelly, Maria K.; Brumbach, Michael T.; Rodriguez, Mark A.; Swartzentruber, Brian S.

Nickel-doped α-MnO2 nanowires (Ni-α-MnO2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO2 or Cu-α-MnO2 is provided. In general, Ni-α-MnO2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s-1), and lower charge transfer resistance (RCT = 2264 Ω at half-wave) values than MnO2 (n = 3.0, k = 0.006 cm s-1, RCT = 6104 Ω at half-wave) or Cu-α-MnO2 (Cu-2.9%, n = 3.5, k = 0.015 cm s-1, RCT = 3412 Ω at half-wave), and the overall activity for Ni-α-MnO2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu-α-MnO2, the increase in ORR activity correlates with the amount of Mn3+ at the surface of the Ni-α-MnO2 nanowire. Examining the activity for both Ni-α-MnO2 and Cu-α-MnO2 materials indicates that the Mn3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO2, 16 of Cu-α-MnO2-2.9%, and 16 of Ni-α-MnO2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO2. The data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire. (Figure Presented).

More Details
Results 101–125 of 193
Results 101–125 of 193