Publications

Results 51–100 of 193
Skip to search filters

Zero-bias conductance peak in Dirac semimetal-superconductor devices

Physical Review Research

Yu, W.; Haenel, Rafael; Rodriguez, Mark A.; Lee, Stephen R.; Zhang, F.; Franz, M.; Pikulin, D.I.; Pan, Wei P.

Majorana zero modes (MZMs), fundamental building blocks for realizing topological quantum computers, can appear at the interface between a superconductor and a topological material. One of the experimental signatures that has been widely pursued to confirm the existence of MZMs is the observation of a large, quantized zero-bias conductance peak (ZBCP) in the differential conductance measurements. In this Letter, we report observation of such a large ZBCP in junction structures of normal metal (titanium/gold Ti/Au)-Dirac semimetal (cadmium-arsenide Cd3As2)-conventional superconductor (aluminum Al), with a value close to four times that of the normal state conductance. Our detailed analyses suggest that this large ZBCP is most likely not caused by MZMs. We attribute the ZBCP, instead, to the existence of a supercurrent between two far-separated superconducting Al electrodes, which shows up as a zero-bias peak because of the circuitry and thermal fluctuations of the supercurrent phase, a mechanism conceived by Ivanchenko and Zil'berman more than 50 years ago [Ivanchenko and Zil'berman, JETP 28, 1272 (1969)]. Our results thus call for extreme caution when assigning the origin of a large ZBCP to MZMs in a multiterminal semiconductor or topological insulator/semimetal setup. We thus provide criteria for identifying when the ZBCP is definitely not caused by an MZM. Furthermore, we present several remarkable experimental results of a supercurrent effect occurring over unusually long distances and clean perfect Andreev reflection features.

More Details

Use of a Be-dome holder for texture and strain characterization of Li metal thin films via sin(ψ) methodology

Powder Diffraction

Rodriguez, Mark A.; Harrison, Katharine L.; Goriparti, Subrahmanyam G.; Griego, James J.M.; Boyce, Brad B.; Perdue, Brian R.

Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (-0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.

More Details

Luminescent Properties of DOBDC Containing MOFs: The Role of Free Hydroxyls

ACS Applied Materials and Interfaces

Henkelis, Susan E.; Rademacher, David R.; Vogel, Dayton J.; Valdez, Nichole R.; Rodriguez, Mark A.; Rohwer, Lauren E.; Nenoff, T.M.

A novel metal-organic framework (MOF), Mn-DOBDC, has been synthesized in an effort to investigate the role of both the metal center and presence of free linker hydroxyls on the luminescent properties of DOBDC (2,5-dihydroxyterephthalic acid) containing MOFs. Co-MOF-74, RE-DOBDC (RE-Eu and Tb), and Mn-DOBDC have been synthesized and analyzed by powder X-ray diffraction (PXRD) and the fluorescent properties probed by UV-Vis spectroscopy and density functional theory (DFT). Mn-DOBDC has been synthesized by a new method involving a concurrent facile reflux synthesis and slow crystallization, resulting in yellow single crystals in monoclinic space group C2/c. Mn-DOBDC was further analyzed by single-crystal X-ray diffraction (SCXRD), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and photoluminescent emission. Results indicate that the luminescent properties of the DOBDC linker are transferred to the three-dimensional structures of both the RE-DOBDC and Mn-DOBDC, which contain free hydroxyls on the linker. In Co-MOF-74 however, luminescence is quenched in the solid state due to binding of the phenolic hydroxyls within the MOF structure. Mn-DOBDC exhibits a ligand-based tunable emission that can be controlled in solution by the use of different solvents.

More Details

Stabilizing effects of oxidation on propagating formation reactions occurring in nanometer-scale metal multilayers

Thin Solid Films

Adams, David P.; Abere, Michael J.; Sobczak, C.; Rodriguez, Mark A.

Reactive rare-earth/transition metal multilayers exhibit a variety of complex reaction behaviors depending on surrounding gaseous environment and material design. Small period (< 100 nm bilayer), 5 μm-thick Sc/Ag multilayers undergo self-sustained formation reactions when ignited in air or in vacuum. High-speed videography reveals unstable reaction waves in these samples, characterized by the repeated, transverse passage of narrow, spin bands. Intermediate Sc/Ag designs – with multilayer period between 100 and 200 nm – only react in air. These multilayers exhibit propagating reactions with alternating unstable and stable characteristics. Narrow, spin bands advance the reaction front stepwise. Soon after the passage of a transverse band, a trailing oxidation wave encroaches on the intermetallic reaction front temporarily pushing the stalled wave forward in a uniform manner. Viewed in full, these events repeat giving rise to a new oscillatory behavior. Sc/Ag multilayers having a large period (> 200 nm bilayer) also react exclusively in air but exhibit a different propagating mode. The oxidation of Sc combined with the exothermic reaction of metal species results in continually-stable waves characterized by a smooth wavefront morphology and uniform velocity. The flame temperatures associated with propagating waves are estimated using measured heats of reaction and enthalpy-temperature relationships in order to provide insight into the possible phase transformations that occur during these different exothermic reactions.

More Details

3D immersive visualization of micro-computed tomography and XRD texture datasets

Powder Diffraction

Rodriguez, Mark A.; Amon, Tod T.; Griego, James J.M.; Brown-Shaklee, Harlan J.; Green, N.

Advancements in computer technology have enabled three-dimensional (3D) reconstruction, data-stitching, and manipulation of 3D data obtained on X-ray imaging systems such as micro-computed tomography (μ-CT). Likewise, intuitive evaluation of these 3D datasets can be enhanced by recent advances in virtual reality (VR) hardware and software. Additionally, the generation, viewing, and manipulation of 3D X-ray diffraction datasets, such as pole figures employed for texture analysis, can also benefit from these advanced visualization techniques. We present newly-developed protocols for porting 3D data (as TIFF-stacks) into a Unity gaming software platform so that data may be toured, manipulated, and evaluated within a more-intuitive VR environment through the use of game-like controls and 3D headsets. We demonstrate this capability by rendering μ-CT data of a polymer dogbone test bar at various stages of in situ mechanical strain. An additional experiment is presented showing 3D XRD data collected on an aluminum test block with vias. These 3D XRD data for texture analysis (χ, φ, 2θ dimensions) enables the viewer to visually inspect 3D pole figures and detect the presence or absence of in-plane residual macrostrain. These two examples serve to illustrate the benefits of this new methodology for multidimensional analysis.

More Details

Thickness dependence of Al0.88Sc0.12N thin films grown on silicon

Thin Solid Films

Knisely, Kathrine E.; Douglas, Erica A.; Mudrick, John M.; Rodriguez, Mark A.; Kotula, Paul G.

The thickening behavior of aluminum scandium nitride (Al0.88Sc0.12N) films grown on Si(111) substrates has been investigated experimentally using X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy, and residual stress measurement. Al0.88Sc0.12N films were grown with thicknesses spanning 14 nm to 1.1 um. TEM analysis shows that the argon sputter etch used to remove the native oxide prior to deposition produced an amorphous, oxygen-rich surface, preventing epitaxial growth. XRD analysis of the films show that the A1ScN(002) orientation improves as the films thicken and the XRD A1ScN(002) rocking curve full width half maximum decreases to 1.34 q for the 1.1 pm thick film. XRD analysis shows that the unit cell is expanded in both the a- and c-axes by Sc doping; the a-axis lattice parameter was measured to be 3.172 ± 0.007 A and the c-axis lattice parameter was measured to be 5.000 ± 0.001 A, representing 1.96% and 0.44% expansions over aluminum nitride lattice parameters, respectively. The grain size and roughness increase as the film thickness increases. A stress gradient forms through the film; the residual stress grows more tensile as the film thickens, from -1.24 GPa to +8.5MPa.

More Details

Combined computational and experimental study of zirconium tungstate

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Kim, Eunja; Gordon, M.E.; Weck, Philippe F.; Greathouse, Jeffery A.; Meserole, S.P.; Rodriguez, Mark A.; Payne, Clay P.; Bryan, Charles R.

We have investigated cubic zirconium tungstate (ZrW2O8) using density functional perturbation theory (DFPT), along with experimental characterization to assess and validate computational results. Cubic zirconium tungstate is among the few known materials exhibiting isotropic negative thermal expansion (NTE) over a broad temperature range, including room temperature where it occurs metastably. Isotropic NTE materials are important for technological applications requiring thermal-expansion compensators in composites designed to have overall zero or adjustable thermal expansion. While cubic zirconium tungstate has attracted considerable attention experimentally, a very few computational studies have been dedicated to this well-known NTE material. Therefore, spectroscopic, mechanical and thermodynamic properties have been derived from DFPT calculations. A systematic comparison of the calculated infrared, Raman, and phonon density-of-state spectra has been made with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements. The thermal evolution of the lattice parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with the observed negative thermal expansion characteristics of cubic zirconium tungstate, α-ZrW2O8. These results show that this DFPT approach can be used for studying the spectroscopic, mechanical and thermodynamic properties of prospective NTE ceramic waste forms for encapsulation of radionuclides produced during the nuclear fuel cycle.

More Details

Rock-welding materials development for deep borehole nuclear waste disposal

Materials Chemistry and Physics

Yang, Pin Y.; Wang, Yifeng; Rodriguez, Mark A.; Brady, Patrick V.

Various versions of deep borehole nuclear waste disposal have been proposed in the past in which effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, inefficient consolidation, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. In this study, we showed that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. The present work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. The approach can be applied to modify granites excavated from different geological sites. Several engineered granitic materials have been explored which possess significantly lower processing and densification temperatures than natural granites. Those new materials consolidate more efficiently by viscous flow and accelerated recrystallization without compromising their mechanical integrity and properties.

More Details

Thickness scaling of pyroelectric response in thin ferroelectric Hf 1-xZr xO2 films

Applied Physics Letters

Smith, Sean S.; Henry, Michael D.; Brumbach, Michael T.; Rodriguez, Mark A.; Ihlefeld, Jon F.

In this study, the scaling of polarization and pyroelectric response across a thickness series (5–20 nm) of Hf0.58Zr0.42O2 films with TaN electrodes was characterized. Reduction in thickness from 20 nm to 5 nm resulted in a decreased remanent polarization from 17 to 2.8 μC cm-2. Accompanying the decreased remanent polarization was an increased absolute pyroelectric coefficient, from 30 to 58 μC m-2 K-1. The pyroelectric response of the 5 nm film was unstable and decreased logarithmically with time, while that of 10 nm and thicker films was stable over a time scale of >300 h at room temperature. Finally, the sign of the pyroelectric response was irreversible with differing polarity of poling bias for the 5 nm thick film, indicating that the enhanced pyroelectric response was of electret origins, whereas the pyroelectric response in thicker films was consistent with a crystallographic origin.

More Details

Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock

International Journal of Greenhouse Gas Control

Ilgen, A.G.; Aman, M.; Espinoza, D.N.; Rodriguez, Mark A.; Griego, James J.M.; Dewers, Thomas D.; Feldman, Joshua D.; Stewart, T.A.; Choens, R.C.; Wilson, J.

The success of geological carbon storage (GCS) depends on the sealing properties of caprocks, typically mudrocks, and their laminated variety – shales. In this study, we examined mineralogical changes in carbonate-rich Mancos Shale and corresponding changes in micro-mechanical properties following the reaction with carbon dioxide (CO2). Mineralogical changes of Mancos Shale depended on the pressure of CO2 during its exposure to the CO2-brine mixtures for up to 8 weeks. Dedolomitization was observed in the reactors pressurized with 100 psi of CO2, combined with the precipitation of gypsum. In the reactor pressurized with 2500 psi of CO2, the complete dissolution of calcite, partial dissolution of dolomite, and precipitation of magnesite and anhydrite were observed. Localized mechanical weakening was observed only for dolomite-muscovite-illite-rich laminae following whole shale puck alteration at 2500 psi of CO2, and a decrease of up to 50 ± 20% in scratch toughness was observed. The quartz-calcite-rich laminae did not exhibit a measurable difference in scratch toughness before and after reaction in CO2-rich brine. The predicted changes in mineralogy, porosity, density, and hardness of Mancos Shale are limited, according to the geochemical models describing alteration of shale by CO2-rich brine lasting for 5000 years. This study illustrates a coupled and localized chemical-mechanical response of caprock to the injection of CO2.

More Details

Infrared and Raman spectroscopy of α-ZrW2O8: A comprehensive density functional perturbation theory and experimental study

Journal of Raman Spectroscopy

Weck, Philippe F.; Gordon, Margaret E.; Greathouse, Jeffery A.; Bryan, Charles R.; Meserole, Stephen M.; Rodriguez, Mark A.; Payne, Clay P.; Kim, Eunja

Cubic zirconium tungstate (α-ZrW2O8), a well-known negative thermal expansion material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Using combined Fourier transform infrared measurements and DFPT calculations, new and extensive assignments were made for the far-infrared (<400 cm−1) spectrum of α-ZrW2O8. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the superior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations for studying the spectroscopic properties of this material.

More Details

Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part

Journal of Materials Research

Yang, Pin Y.; Rodriguez, Mark A.; Deibler, Lisa A.; Jared, Bradley H.; Griego, James J.M.; Kilgo, Alice C.; Allen, Amy A.; Stefan, Daniel K.

The powder-bed laser additive manufacturing (AM) process is widely used in the fabrication of three-dimensional metallic parts with intricate structures, where kinetically controlled diffusion and microstructure ripening can be hindered by fast melting and rapid solidification. Therefore, the microstructure and physical properties of parts made by this process will be significantly different from their counterparts produced by conventional methods. This work investigates the microstructure evolution for an AM fabricated AlSi10Mg part from its nonequilibrium state toward equilibrium state. Special attention is placed on silicon dissolution, precipitate formation, collapsing of a divorced eutectic cellular structure, and microstructure ripening in the thermal annealing process. These events alter the size, morphology, length scale, and distribution of the beta silicon phase in the primary aluminum, and changes associated with elastic properties and microhardness are reported. The relationship between residual stress and silicon dissolution due to changes in lattice spacing is also investigated and discussed.

More Details

Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS)

Additive Manufacturing

Kustas, Andrew K.; Susan, D.F.; Johnson, Kyle J.; Whetten, Shaun R.; Rodriguez, Mark A.; Dagel, Daryl D.; Michael, Joseph R.; Keicher, David M.; Argibay, Nicolas A.

Processing of the low workability Fe-Co-1.5V (Hiperco ® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification, which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. Magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco ® alloys. Hiperco ® is a registered trademark of Carpenter Technologies, Readings, PA.

More Details
Results 51–100 of 193
Results 51–100 of 193