Publications

Results 51–84 of 84
Skip to search filters

Arctic Climate Systems Analysis

Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura P.; Desilets, Darin M.; Reinert, Rhonda K.

This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

More Details

Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

Liu, Zhen L.; Safta, Cosmin S.; Sargsyan, Khachik S.; Najm, H.N.; van Bloemen Waanders, Bart G.; LaFranchi, Brian L.; Ivey, Mark D.; Schrader, Paul E.; Michelsen, Hope A.; Bambha, Ray B.

In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF assimilated meteorology fields, making it possible to perform a hybrid simulation, in which the Eulerian model (CMAQ) can be used to compute the initial condi- tion needed by the Lagrangian model, while the source-receptor relationships for a large state vector can be efficiently computed using the Lagrangian model in its backward mode. In ad- dition, CMAQ has a complete treatment of atmospheric chemistry of a suite of traditional air pollutants, many of which could help attribute GHGs from different sources. The inference of emissions sources using atmospheric observations is cast as a Bayesian model calibration problem, which is solved using a variety of Bayesian techniques, such as the bias-enhanced Bayesian inference algorithm, which accounts for the intrinsic model deficiency, Polynomial Chaos Expansion to accelerate model evaluation and Markov Chain Monte Carlo sampling, and Karhunen-Lo %60 eve (KL) Expansion to reduce the dimensionality of the state space. We have established an atmospheric measurement site in Livermore, CA and are collect- ing continuous measurements of CO2 , CH4 and other species that are typically co-emitted with these GHGs. Measurements of co-emitted species can assist in attributing the GHGs to different emissions sectors. Automatic calibrations using traceable standards are performed routinely for the gas-phase measurements. We are also collecting standard meteorological data at the Livermore site as well as planetary boundary height measurements using a ceilometer. The location of the measurement site is well suited to sample air transported between the San Francisco Bay area and the California Central Valley.

More Details

The Atmospheric and Terrestrial Mobile Laboratory (ATML)

Zak, Bernard D.; Ivey, Mark D.; Bambha, Ray B.; Roskovensky, John K.; Schubert, William K.; Michelsen, Hope A.

The ionospheric disturbance dynamo signature in geomagnetic variations is investigated using the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. The model results are tested against reference magnetically quiet time observations on 21 June 1993, and disturbance effects were observed on 11 June 1993. The model qualitatively reproduces the observed diurnal and latitude variations of the geomagnetic horizontal intensity and declination for the reference quiet day in midlatitude and low-latitude regions but underestimates their amplitudes. The patterns of the disturbance dynamo signature and its source 'anti-Sq' current system are well reproduced in the Northern Hemisphere. However, the model significantly underestimates the amplitude of disturbance dynamo effects when compared with observations. Furthermore, the largest simulated disturbances occur at different local times than the observations. The discrepancies suggest that the assumed high-latitude storm time energy inputs in the model were not quantitatively accurate for this storm.

More Details

ARRA additions to the north slope of Alaska

Ivey, Mark D.; Zak, Bernard D.; Zirzow, Jeffrey A.

The U.S. Department of Energy (DOE) provides scientific infrastructure and data archives to the international Arctic research community through a national user facility, the ARM Climate Research Facility, located on the North Slope of Alaska. The ARM sites at Barrow and Atqasuk, Alaska have been collecting and archiving atmospheric data for more than 10 years. These data have been used for scientific investigation as well as remote sensing validations. Funding from the Recovery Act (American Recovery and Reinvestment Act of 2009) will be used to install new instruments and upgrade existing instruments at the North Slope sites. These instruments include: scanning precipitation radar; scanning cloud radar; automatic balloon launcher; high spectral resolution lidar; eddy correlation flux systems; and upgraded ceilometer, AERI, micropulse lidar, and millimeter cloud radar. Information on these planned additions and upgrades will be provided in our poster. An update on activities planned at Oliktok Point will also be provided.

More Details

New Mexico cloud super cooled liquid water survey final report 2009

Roskovensky, John K.; Ivey, Mark D.

Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

More Details

Preliminary systems engineering evaluations for the National Ecological Observatory Network

Kottenstette, Richard K.; Heller, Edwin J.; Ivey, Mark D.; Brocato, Robert W.; Zak, Bernard D.; Zirzow, Jeffrey A.; Schubert, William K.; Crouch, Shannon M.; Dishman, James L.; Robertson, Perry J.; Osborn, Thor D.

The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

More Details
Results 51–84 of 84
Results 51–84 of 84