Publications

Results 26–50 of 97
Skip to search filters

Determination of pressure and density of shocklessly compressed beryllium from x-ray radiography of a magnetically driven cylindrical liner implosion

AIP Conference Proceedings

Lemke, R.W.; Martin, M.R.; McBride, Ryan D.; Davis, Jean-Paul D.; Knudson, Marcus D.; Sinars, Daniel S.; Smith, Ian C.; Savage, Mark E.; Stygar, William A.; Killebrew, K.; Flicker, Dawn G.; Herrmann, Mark H.

We describe a technique for measuring the pressure and density of a metallic solid, shocklessly compressed to multi-megabar pressure, through x-ray radiography of a magnetically driven, cylindrical liner implosion. Shockless compression of the liner produces material states that correspond approximately to the principal compression isentrope (quasi-isentrope). This technique is used to determine the principal quasi-isentrope of solid beryllium to a peak pressure of 2.4 Mbar from x-ray images of a high current (20 MA), fast (∼100 ns) liner implosion. © 2012 American Institute of Physics.

More Details

Solid liner implosions on Z for producing multi-megabar, shockless compressions

Physics of Plasmas

Martin, M.R.; Lemke, Raymond W.; McBride, Ryan D.; Davis, Jean-Paul D.; Dolan, Daniel H.; Knudson, Marcus D.; Cochrane, K.R.; Sinars, Daniel S.; Smith, Ian C.; Savage, Mark E.; Stygar, William A.; Killebrew, K.; Flicker, Dawn G.; Herrmann, Mark H.

Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen, Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50 kms-1. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries. © 2012 American Institute of Physics.

More Details

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, M.E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles N.; Bailey, James E.; Hansen, Stephanie B.; McBride, Ryan D.; Herrmann, Mark H.; Lopez, A.; Peterson, Kyle J.; Ampleford, David A.; Jones, Michael J.; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund Y.; McPherson, Leroy A.; Harding, Eric H.; Knapp, Patrick K.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John M.; Owen, Albert C.; McKee, George R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.W.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias G.; Rambo, Patrick K.; Sinars, Daniel S.; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator

Physical Review Letters

McBride, Ryan D.; Peterson, Kyle J.; Sefkow, Adam B.; Nakhleh, Charles N.; Laspe, Amy R.; Lopez, Mike R.; Smith, Ian C.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Slutz, Stephen A.; Rogers, Thomas J.; Jennings, Christopher A.; Sinars, Daniel S.; Cuneo, M.E.; Herrmann, Mark H.; Lemke, Raymond W.; Martin, Matthew; Vesey, Roger A.

Abstract not provided.

Plasma power station with quasi spherical direct drive capsule for fusion yield and inverse diode for driver-target coupling

Fusion Science and Technology

VanDevender, J.P.; Cuneo, M.E.; Slutz, S.A.; Herrmann, Mark H.; Vesey, Roger A.; Sinars, Daniel S.; Seidel, David B.; Schneider, Larry X.; Mikkelson, Kenneth A.; Harper-Slaboszewicz, V.H.; Peyton, B.P.; Sefkow, Adam B.; Matzen, M.K.

The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. We report the system configuration and end-toend simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.

More Details

Plasma Power Station with Quasi Spherical Direct Drive Capsule for Fusion Yield and Inverse Diode for Driver-Target Coupling

Fusion Science and Technology

Cuneo, M.E.; Matzen, M.K.; Sinars, Daniel S.; Slutz, Stephen A.; Herrmann, Mark H.; Vesey, Roger A.; Seidel, David B.; Schneider, Larry X.; Mikkelson, Kenneth A.; Harper-Slaboszewicz, V.H.; Sefkow, Adam B.

The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. Here, we report the system configuration and end-to-end simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.

More Details
Results 26–50 of 97
Results 26–50 of 97